HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tìm Min \(T=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
Ký hiệu S là tập hợp nghiệm của bất phương trình \(x^2-\left(8m+1\right)x+15m^2+3m\le0\). Tìm điều kiện của m để khi biểu diễn trên trục số, độ dài của S lớn hơn 3
Tìm Min \(P=\dfrac{x}{2}+\dfrac{5}{x-2}\)
Đường thẳng d qua M (4; 1) và cắt các tia Ox, Oy lần lượt tại A và B sao cho tổng OA + OB nhỏ nhất. Viết phương trình đường thẳng d
Bất đẳng thức nào sau đây luôn đúng với giá trị của biến, giải thích
A. \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2+b^2+c^2\right)\)
B. \(a^2+b^2\ge3ab\)
C. \(x^3+y^3+1\ge3xy\)
D. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
Giải bất phương trình \(\dfrac{1-3x^2}{\sqrt{5x-1}}< x+2+\sqrt{5x-1}\)
Biết rằng \(f\left(x\right)=ax^2+bx+c>0,\forall x\in R\). Mệnh đề nào sau đây sai (giải thích)
A. a + b + c >0
B. 5a - b + 2c > 0
C. 10a - 2b + 2c > 0
D. 11a - 3b + 5c > 0
Tập hợp điểm M thỏa mãn \(\left\{{}\begin{matrix}x=2+3sint\\y=-3+4cost\end{matrix}\right.\) là phương trình đường tròn có bán kính là ?