Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 53
Điểm GP 4
Điểm SP 33

Người theo dõi (10)

PH
LN
NT

Đang theo dõi (4)


Câu trả lời:

a) Xét tam giác EDB và tam giác EIB
Có : + góc EDB = góc EIB = 90độ (gt)
+ EB chung
+ góc DEB = góc IEB (Do BE là phân giác góc DEF - gt)
=> tam giác EDB = tam giác EIB (cạnh huyền và góc nhọn).
=> BD = BI (cặp cạnh tương ứng)

b) Xét tam giác DBH và tam giác IBF
Có : góc BDH = góc BIF = 90độ (gt)
+ BD = BI (chứng minh trên)
+ góc DBH = góc IBF (đối đỉnh)
=> tam giác DBH = tam giác IBF (g.c.g)
=> BH = BF (cặp cạnh tương ứng).

c) Xét tam giác BIF có góc BIF = 90độ (gt) => BF là cạnh huyền (cạnh đối diện với góc vuông trong tam giác vuông là cạnh huyền và trong tam giác vuông thì cạnh huyền là cạnh lớn nhất) => BI < BF . Mà BD = BI (chứng minh trên) => DB < BF

d) Ta có khi 3 điểm cùng nằm trên 1 đường thẳng thì chúng thẳng hàng => Để chứng minh 3 điểm thẳng hàng ta có thể chứng minh chúng cùng nằm trên 1 đường nào đó.
Xét tam giác HEF có HI và FD (Do HI ⊥ EF và DF ⊥ HE) mà HI giao DF tại B => B là trưc tâm tam giác HEF
=> HE kéo dài sẽ vuông góc với HF => HE thuộc đường cao hạ từ E của tam giác HEF(1).
Do K là trung điểm HF => EK là trung tuyến. Mặt khác ta có tam giác EHF là tam giác cân tại E (bạn hãy tự chứng minh HE = HF để suy ra điều này).
=> EK cũng là đường cao (2)
Từ (1) và (2) => EB và EK trùng nhau. => EB và EK cùng thuộc đường cao hạ từ E
=> E;B và K thẳng hàng
Lưu ý : Trong tam giác cân tại đỉnh nào, thì các đường: đuờng cao; trung tuyến, phân giác, trung trực hạ từ đỉnh đó là 1 - nếu chưa biết thì bạn tự chứng minh - không hề khó