chứng minh đẳng thức
a) cho \(x+y+z=0\) chứng minh rằng \(x^3+x^2z+y^2z-xyz+y^3=0\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
c) \(a^3+b^3+c^3=3abc\) với a+b+c=0
chứng minh rằng
a) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\cdot\left(a^2+b^2+c^2+ab+bc-ca\right)\)
áp dụng suy ra kết quả
a) \(a^3+b^3+c^3=3abc\) thì \(\left\{{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
b) cho \(a^3+b^3+c^3=3abc\left(a+c\ne0\right)\)
tính B= \(\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
tính nhanh
a) A=\(2018^2-2017\cdot2019\)
b) B=\(9^8\cdot2^8-\left(18^4-1\right)\cdot\left(18^4+1\right)\)
c) C=\(163^2+74\cdot163+37^2\)
d) D=\(\dfrac{2018^3-1}{2018^2+2019}\)
e) E=\(\left(2+1\right)\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)-2^{32}\)