Câu trả lời:
\(\sqrt{3x^2+5x-13}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\3x^2+5x-13=\left(x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\3x^2+5x-13=x^2+2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2+3x-14=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=2\left(\text{nhận}\right)\\x=-\dfrac{7}{2}\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy: \(S=\left\{2\right\}\)