HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Gọi số học sinh cần tìm là : a \(\left(hs\right)\) \(\left(400\le a\le500\right);a\in\) N*
Vì liên đội thiếu niên khi xếp hàng 2, hàng 3, hàng 5, hàng 7 thì vừa đủ
=> a là phải chia hết cho \(\left(2;3;5;7\right)\)
\(BCNN\left(2;3;5;7\right)=2.3.5.7=210\)
=> \(a\in\left\{210;420;630;840;1050;...\right\}\)
mà ta lại có đk \(400\le a\le500\)
=> \(a=420\)
Vậy số học sinh là 420 ( em)
\(@Dosea\)
vậy bạn hãy đọc kĩ lý thuyết trong sách và làm thêm nhiều bài tập nhé!!
Câu a
a, M là tập hợp các số tự nhiên từ 5 đến 9
=> \(M=\left\{5;6;7;8;9\right\}\)
\(P=\left\{3;6;7;5;8\right\}\)
Ta có 6 thuộc M vì nó là một phần tử trong M
8 thuộc M vì nó là 1 phần tử trong M
3 không thuộc M vì 3 ko là 1 phần từ trong M mà 3 thuộc P
7,5 ko thuộc M vì 7,5 là số thập phân không phải là số tự nhiên
Ta có 1/3 số tiền bán đồ sứ bằng 1/2 số tiền bán đồ nhôm và bằng 1/5 số tiền bán đồ điện
=> tổng số phần bằng nhau là : \(3+2+5=10\left(phần\right)\)
Số tiền bán đồ sứ là :
\(1250000:10\times3=375000\left(đồng\right)\)
Số tiền bán đồ nhôm là :
\(1250000:10\times2=250000\left(đồng\right)\)
Số tiền bán đồ điện là :
\(1250000:10\times5=625000\left(đồng\right)\)
Đáp số :...
\(2x^2+2x-x-9=0\\ 2x^2+x-9=0\\ =>x=\dfrac{-1+\sqrt{73}}{4};x=\dfrac{-1-\sqrt{73}}{4}\)
mà các nghiệm này ko thỏa mãn là số tự nhiên
=> Phương trình vô no
Cho mình sửa câu a nhé :
\(a,=\sqrt{\left(2\sqrt{3}-5\right)^2}-\sqrt{\left(2\sqrt{3}+5\right)^2}\\ =\left|2\sqrt{3}-5\right|-\left|2\sqrt{3}+5\right|\\ =5-2\sqrt{3}-2\sqrt{3}-5\\ =-4\sqrt{3}\)
\(a,=\sqrt{37-2.2\sqrt{3}.5}-\sqrt{37+2.2\sqrt{3}.5}\\ =\sqrt{\left(2\sqrt{3}-5\right)^2}-\sqrt{\left(2\sqrt{3}+5\right)^2}\\ =\left|2\sqrt{3}-5\right|-\left|2\sqrt{3}+5\right|\\ =2\sqrt{3}-5-2\sqrt{3}-5\\ =-10\)
\(b,đkx\ge\dfrac{1}{6}\\ \sqrt{3x+\sqrt{6x-1}}=\sqrt{2}\\ \left(\sqrt{3x+\sqrt{6x-1}}\right)=\left(\sqrt{2}\right)^2\\ 3x+\sqrt{6x-1}=2\\ \left(\sqrt{6x-1}\right)^2=\left(2-3x\right)^2\\ 6x-1=4-12x+9x^2\\ 9x^2-12x-6x+4+1=0\\ 9x^2-18x+5=0\\ 9x^2-3x-15x+5=0\\ 3x\left(3x-1\right)-5\left(3x-1\right)=0\\ \left(3x-5\right)\left(3x-1\right)=0\\ \left[{}\begin{matrix}3x-5=0\\3x-1=0\end{matrix}\right.=>x=\dfrac{5}{3}\left(thoaman\right);x=\dfrac{1}{3}\left(thoaman\right)\)
Xét Δ \(AHB\) vuông tại H và Δ \(AHC\) vuông tại H có
\(sinB=\dfrac{AH}{c};sinC=\dfrac{AH}{b}\)
Ta lấy vế chia vế :
\(\dfrac{sinB}{sinC}=\dfrac{AH}{c}:\dfrac{AH}{b}=\dfrac{AH}{c}.\dfrac{b}{AH}=\dfrac{b}{c}\\ =>\dfrac{b}{sinB}=\dfrac{c}{sinC}\left(1\right)\)
Giả sử : gọi \(BE\) là đg cao
Xét Δ \(ABE\) và Δ \(BEC\) vuông tại H có
\(sinC=\dfrac{BE}{a};sinA=\dfrac{BE}{c}\)
\(\dfrac{sinC}{sinA}=\dfrac{BE}{a}:\dfrac{BE}{c}=\dfrac{a}{c}\\ =>\dfrac{a}{sinA}=\dfrac{c}{sinC}\left(2\right)\)
Từ 1 và 1
=> \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\left(đpcm\right)\)