\(Bài1\)
\(a.A=7x-5-x^2+8x-1+x^2\)\(A=7x+8x-5-1-x^2+x^2\)
\(A=15x-6.\)
\(b.B=x-4+3x^2+x-4x^2-1\)
\(B=x+x+3x^2-4x^2-4-1\)
\(B=-x^2+2x-5.\)
\(c.C=\left(2x-9+x^2\right)-\left(5-x+x^2\right)\)
\(C=2x-9+x^2-5+x-x^2\)
\(C=2x+x-9-5+x^2-x^2\)
\(C=3x-14.\)
\(d.D=5x-\left(1-3x\right)+\left(x^2-x+7\right)\)
\(D=5x-1+3x+x^2-x+7\)
\(D=5x+3x-x+x^2-1+7\)
\(D=x^2+7x+6.\)
\(Bài2\)
\(a.A=x^2-2\cdot x+\left(-x\right)+5\) \(tại\) \(x=2\)
\(A=x^2-2x-x+5\)
\(A=x^2-3x+5\) \(tại\) \(x=2.\)
\(A=2^2-3\cdot2+5\cdot2=4\cdot6+10=240.\)
\(b.B=x^2-x+5\) \(tại\) \(x=-4\)
\(B=-4x^2-4+5\cdot\left(-4\right)\)
\(B=-16-4+\left(-20\right)\)
\(B=\left(-20\right)+\left(-20\right)=-40\)
\(Bài 3. Ko biết .\)
\(Bài 5.\)
\(a.x\cdot5x=5x^2.\) \(b.4x\cdot x^2=4x^3.\)
\(c.2\cdot x\left(-3x^0\cdot x^2\right)=-2x\cdot\left(3x^0\cdot x^2\right)=-6x\cdot x^2\cdot x=-6x^3.\)
\(d.3\cdot x\left(-x\right)=-3x\cdot x=-3x^2.\)
\(e.\left(5x\right)^2\cdot\left(-x\right)=-\left(5x\right)^2\cdot x=-x\cdot\left(5x\right)^2\)\(=-x\cdot25x^2=25x^3.\)
\(bài 6. Ko biết\)
\(Bài7\)
\(a.A=5x^2y\left(x-7\right)-5xy\left(7-x\right)\)
\(A=5x^3y-35x^2y-35xy+5x^2y\)
\(A=5x^3y-35x^2y+5x^2y-35xy\)
\(A=5x^3y-30x^2y-35xy.\)
\(b.B=ab\left(x-2\right)-a^2\left(x-2\right)\)
\(B=abx-2ab-xa^2+2a^2.\)
\(c.C=4x^3y^2-8x^2y^3+12x^3y\)
\(C=4x^2y\cdot xy-4x^2y\cdot2y^2+4x^2y\cdot3x\)
\(C=4x^2y\left(xy-2y^2+3x\right).\)