HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho \(a,b>0:a+b\le2\).Tìm max: P=\(\sqrt{a\left(b+3\right)}+\sqrt{b\left(a+3\right)}\)
Cho \(a,b>0:\dfrac{a}{1+a}+\dfrac{b^3}{b+1}=1\). Tìm max: P=\(ab^3\)
Cho \(a,b,c>0\). Chứng minh:
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\)
Cho \(a,b>0:ab+1\le b\). Chứng minh:
\(\left(a+\dfrac{1}{a^2}\right)+\left(b^2+\dfrac{1}{b}\right)\ge9\)
Cho a, b: \(2a^2+5b^2+2ab=1\)
Chứng minh: \(-\dfrac{1}{\sqrt{3}}\le\dfrac{a-b}{a+2b+2}\le\dfrac{1}{\sqrt{3}}\)
a, b > 0. Chứng minh:\(\dfrac{1}{a^3}+\dfrac{a^3}{b^3}+b^3\ge\dfrac{1}{a}+\dfrac{a}{b}+b\)
Cho a, b,c : abc = 1. Chứng minh:
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}+\dfrac{b^2c^2}{2b^2+c^2+3b^2c^2}+\dfrac{c^2a^2}{2c^2+a^2+3a^2c^2}\le\dfrac{1}{2}\)
Cho \(x,y,z\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)
a, b, c là độ dài 3 cạnh tam giác. Chứng minh:
a, 1 < \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
b, 1 < \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)