Cho hàm số \(y=f\left(x\right)=x^2-6x+1\). Khẳng định nào sau đây đúng?
Hàm số đồng biến trên khoảng \(\left(-\infty;3\right)\) và nghịch biến trên khoảng \(\left(3;+\infty\right)\).Hàm số nghịch biến trên khoảng \(\left(-\infty;3\right)\) và đồng biến trên khoảng \(\left(3;+\infty\right)\).Hàm số luôn luôn đồng biến.Hàm số luôn luôn nghịch biến.Hướng dẫn giải:Hàm số đã cho có dạng \(y=ax^2+bx+c\) với \(a=c=1,b=-6\). Đồ thị là một parabol quay bề lõm lên trên, vì vây các khẳng định khác với " Hàm số nghịch biến trên khoảng \(\left(-\infty;3\right)\) và đồng biến trên khoảng \(\left(3;+\infty\right)\)" đều sai.