Bài tập cuối chương VII

H24
Hướng dẫn giải Thảo luận (1)

A. Sai vì chưa chắc chắn có thể d chỉ cắt (P)

B. Đúng

C. Sai vì d có thể chỉ cắt (P) vì d chưa chắc nằm trên mặt phẳng (Q)

D. Sai vì d vuông góc (Q) thì d sẽ song song với (P)

Trả lời bởi Đức Hiếu
H24
Hướng dẫn giải Thảo luận (1)
H24
Hướng dẫn giải Thảo luận (1)

Chọn C, bởi vì AC ko thể vuông góc với SB và SD được mà chỉ có thể vuông góc với BD thôi

Trả lời bởi Nguyễn Lê Phước Thịnh
H24
Hướng dẫn giải Thảo luận (1)

Thể tích của khối chóp có công thức là \(V=\dfrac{1}{3}.S.h\)

Vậy đáp án là C

Trả lời bởi Đức Hiếu
H24
Hướng dẫn giải Thảo luận (1)

Ta có \(OA \bot OB,OA \bot OC \Rightarrow OA \bot \left( {OBC} \right);BC \subset \left( {OBC} \right) \Rightarrow OA \bot BC\)

Trong (OBC) kẻ \(OD \bot BC\)

\(\begin{array}{l} \Rightarrow BC \bot \left( {OAD} \right);BC \subset \left( {ABC} \right) \Rightarrow \left( {OAD} \right) \bot \left( {ABC} \right)\\\left( {OAD} \right) \cap \left( {ABC} \right) = AD\end{array}\)

Trong (OAD) kẻ \(OE \bot AD\)

\( \Rightarrow OE \bot \left( {ABC} \right) \Rightarrow d\left( {O,\left( {ABC} \right)} \right) = OE\)

Xét tam giác OBC vuông tại O có

\(\frac{1}{{O{D^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {2a} \right)}^2}}} = \frac{3}{{4{a^2}}} \Rightarrow OD = \frac{{2a\sqrt 3 }}{3}\)

Xét tam giác OAD vuông tại O có

\(\frac{1}{{O{E^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{D^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{{2a\sqrt 3 }}{3}} \right)}^2}}} = \frac{7}{{4{a^2}}} \Rightarrow OE = \frac{{2a\sqrt 7 }}{7}\)

Vậy \(d\left( {O,\left( {ABC} \right)} \right) = \frac{{2a\sqrt 7 }}{7}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

a) Xét tam giác ABC cân tại A có

I là trung điểm của BC

\( \Rightarrow AI \bot BC\)

Xét tam giác ACD cân tại D có

I là trung điểm của BC

\( \Rightarrow DI \bot BC\)

Ta có \(AI \bot BC,DI \bot BC \Rightarrow BC \bot \left( {AID} \right)\)

b) \(BC \bot \left( {AID} \right);BC \subset \left( {BCD} \right) \Rightarrow \left( {BCD} \right) \bot \left( {AID} \right)\)

\(\left( {BCD} \right) \cap \left( {AID} \right) = DI\)

Trong (AID) có \(AH \bot DI\)

\( \Rightarrow AH \bot \left( {BCD} \right)\)

c) Ta có \(BC \bot \left( {AID} \right);IJ \subset \left( {AID} \right) \Rightarrow BC \bot IJ\)

Mà \(IJ \bot AD\)

Do đó IJ là đường vuông góc chung của AD và BC.

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

a) \(SA \bot BC\left( {SA \bot \left( {ABC} \right)} \right),AB \bot BC \Rightarrow BC \bot \left( {SAB} \right),BC \subset \left( {SBC} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\)

b) +) Trong (SAC) kẻ \(AD \bot SC \Rightarrow d\left( {A,SC} \right) = AD\)

Xét tam giác ABC vuông tại B có

\(\sin \widehat {CAB} = \frac{{BC}}{{AC}} \Rightarrow AC = \frac{a}{{\sin {{30}^0}}} = 2a\)

Xét tam giác SAC vuông tại A có

\(\frac{1}{{A{D^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {2a} \right)}^2}}} = \frac{3}{{4{a^2}}} \Rightarrow AD = \frac{{2a\sqrt 3 }}{3}\)

Do đó \(d\left( {A,SC} \right) = \frac{{2a\sqrt 3 }}{3}\)

+) \(\left( {SAB} \right) \bot \left( {SBC} \right),\left( {SAB} \right) \cap \left( {SBC} \right) = SB\)

Trong (SAB) kẻ \(AE \bot SB\)

\( \Rightarrow AE \bot \left( {SBC} \right) \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AE\)

Xét tam giác ABC vuông tại B có

\(\tan \widehat {CAB} = \frac{{BC}}{{AB}} \Rightarrow AB = \frac{a}{{\tan {{30}^0}}} = a\sqrt 3 \)

Xét tam giác SAB vuông tại A có

\(\frac{1}{{A{E^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {a\sqrt 3 } \right)}^2}}} = \frac{5}{{6{a^2}}} \Rightarrow AE = \frac{{a\sqrt {30} }}{5}\)

Vậy \(d\left( {A,\left( {SBC} \right)} \right) = \frac{{a\sqrt {30} }}{5}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Gọi M là trung điểm của AD. Suy ra SM vuông góc mặt phẳng (ABCD). 

a, Vì tam giác SAD là tam giác vuông cân 

\(\Rightarrow SA=SD=\dfrac{a}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}a\)

\(\Rightarrow SM=\sqrt{SA^2-AM^2}=\dfrac{1}{2}a\)

\(\Rightarrow V_{S.ABCD}=SM.S_{ABCD}=\dfrac{1}{2}a.a^2=\dfrac{1}{2}a^3\)

b, Qua M dựng đường thẳng MN song song với AB cắt BC tại N. Dựng MH vuông góc với SN. 

Dễ dàng nhận thấy BC vuông góc với (SMN) do \(SM\perp BC;MN\perp BC\)

\(\Rightarrow MH\perp BC\)

mà \(MH\perp SN\Rightarrow MH\perp\left(SBC\right)\Rightarrow MH\perp SC\)

Hay MH chính là khoảng cách giữa AD và SC (Do cùng vuông góc) 

Ta có: \(\dfrac{1}{MH^2}=\dfrac{1}{SM^2}+\dfrac{1}{MN^2}\Rightarrow\dfrac{1}{MH^2}=\dfrac{1}{\dfrac{1}{4}a^2}+\dfrac{1}{a^2}=\dfrac{5}{a^2}\Rightarrow MH=\dfrac{\sqrt{5}}{5}a\)

Trả lời bởi Đức Hiếu
H24
Hướng dẫn giải Thảo luận (1)

a) Diện tích tam giác ABD bằng diện tích tam giác BCD vì chung đáy BD và chiều cao AO = OC (ABCD là hình thoi)

Diện tích tam giác ABD: \({S_{ABD}} = \frac{1}{2}AB.AD.\sin \widehat {BAD} = \frac{1}{2}a.a.\sin {60^0} = \frac{{{a^2}\sqrt 3 }}{4}\)

\( \Rightarrow S = 2{S_{ABD}} = \frac{{{a^2}\sqrt 3 }}{2}\)

Thể tích khối hộp là \(V = AA'.{S_{ABCD}} = a.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{2}\)

b) Gọi \(AC \cap BD = \left\{ O \right\}\)

Ta có \(AA' \bot BD,AO \bot BD \Rightarrow BD \bot \left( {A'AO} \right);BD \subset \left( {A'BD} \right) \Rightarrow \left( {A'AO} \right) \bot \left( {A'BD} \right)\)

\(\left( {A'AO} \right) \cap \left( {A'BD} \right) = A'O\)

Trong (A’AO) kẻ \(AE \bot A'O\)

\( \Rightarrow AE \bot \left( {A'BD} \right) \Rightarrow d\left( {A,\left( {A'BD} \right)} \right) = AE\)

Xét tam giác ABD có AB = AD và \(\widehat {BAD} = {60^0}\) nên tam giác ABD đều

\( \Rightarrow OA = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác AOA’ vuông tại A có

\(\frac{1}{{A{E^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{O{A^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{7}{{3{a^2}}} \Rightarrow AE = \frac{{a\sqrt {21} }}{7}\)

Vậy \(d\left( {A,\left( {A'BD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Gọi \(AC \cap BD = \left\{ O \right\}\) mà A’.ABCD là hình chóp đều nên \(A'O \bot \left( {ABCD} \right)\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\( \Rightarrow OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác A’AO vuông tại O có

\(A'O = \sqrt {A{{A'}^2} - A{O^2}}  = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}  = \frac{{a\sqrt 2 }}{2}\)

\({S_{ABCD}} = {a^2}\)

Vậy khối lăng trụ có thể tích \(V = \frac{1}{3}A'O.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 2 }}{2}.{a^2} = \frac{{{a^3}\sqrt 2 }}{6}\)

Nếu hình lăng trụ \(ABCD.A'B'C'D'\) xoay lại thành hình lăng trụ AA’D’D.BB’C’C thì thể tích không thay đổi do đó thể tích hình chóp \(A'.BB'C'C\) bằng một phần 3 thể tích hình lăng trụ AA’D’D.BB’C’C vì chung đáy và chung chiều cao kẻ từ A’ xuống đáy BB’C’C.

Thể tích khối chóp là \({V_{A'.BB'C'C}} = \frac{1}{3}.\frac{{{a^3}\sqrt 2 }}{6} = \frac{{{a^3}\sqrt 2 }}{{18}}\)

Trả lời bởi Quoc Tran Anh Le