Bài tập cuối chương VII

QL
Hướng dẫn giải Thảo luận (1)

a) Ta có \(I\left( {2; - 3} \right)\) và \(R = \sqrt {{2^2} + {{\left( { - 3} \right)}^2} - \left( { - 12} \right)}  = 5\)

b) Ta có: \({5^2} + {1^2} - 4.5 + 6.1 - 12 = 0\). Suy ra M thuộc \(\left( C \right)\). Tiếp tuyến d của (C) tại M có vectơ pháp tuyến là \(\overrightarrow {{n_d}}  = \overrightarrow {IM}  = \left( {3;4} \right)\), đồng thời d đi qua điểm \(M\left( {5;1} \right)\).

Vậy phương trình  của d là  \(3\left( {x - 5} \right) + 4\left( {y - 1} \right) = 0 \Leftrightarrow 3x + 4y - 19 = 0\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Các giao điểm của (E) với trục hoành có tọa độ thỏa mãn hệ phương trình

\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \pm a\\y = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{A_1}\left( { - a;0} \right)\\{A_2}\left( {a;0} \right)\end{array} \right.\)

Các giao điểm của (E) với trục tung có tọa độ thỏa mãn hệ phương trình

\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\\x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y =  \pm b\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{B_1}\left( {0; - b} \right)\\{B_2}\left( {0;b} \right)\end{array} \right.\)

Ta có \({A_1}{A_2} = 2a,{B_1}{B_2} = 2b\).

b) Do M thuộc (E) nên ta có \(\frac{{x_o^2}}{{{a^2}}} + \frac{{y_o^2}}{{{b^2}}} = 1\)

Do \(a > b > 0\) nên ta có \(\frac{{x_o^2}}{{{a^2}}} \le \frac{{x_o^2}}{{{b^2}}}\). Suy ra \(1 \le \frac{{x_o^2}}{{{b^2}}} + \frac{{y_o^2}}{{{b^2}}} \Rightarrow {b^2} \le x_o^2 + y_o^2\)

Tương tự ta có \(\frac{{y_o^2}}{{{a^2}}} \le \frac{{y_o^2}}{{{b^2}}}\) nên \(1 \ge \frac{{y_o^2}}{{{a^2}}} \le \frac{{y_o^2}}{{{b^2}}} \Rightarrow {a^2} \ge x_o^2 + y_o^2\)

Vậy \({b^2} \le x_o^2 + y_o^2 \le {a^2}\)

Ta có \(OM = \sqrt {x_o^2 + y_o^2} \) suy ra \(b \le OM \le a\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)
QL
Hướng dẫn giải Thảo luận (1)

a) Phương trình đường tròn tâm A bán kính AB là \({\left( {x + 1} \right)^2} + {y^2} = 17\)

b) Ta có \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}}  = \left( {1; - 4} \right)\).

Phương trình AB là \(1\left( {x + 1} \right) - 4y = 0 \Leftrightarrow x - 4y + 1 = 0\).

c) Bán kính của đường tròn tâm O, tiếp xúc với đường thẳng AB là

\(R = d\left( {O,AB} \right) = \frac{{\left| {0 - 4.0 + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{{\sqrt {17} }}\)

Phương trình đường tròn tâm O tiếp xúc AB là \({x^2} + {y^2} = \frac{1}{{17}}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)
QL
Hướng dẫn giải Thảo luận (1)
QL
Hướng dẫn giải Thảo luận (1)
QL
Hướng dẫn giải Thảo luận (1)
QL
Hướng dẫn giải Thảo luận (1)

Phương trình \({x^2} + {y^2} = 2\) là một phương trình đường tròn với \(O\left( {0;0} \right)\) là tâm và bán kính \(R = \sqrt 2 \).

Chọn C.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có \(\overrightarrow {BC}  = \left( { - 5; - 1} \right)\), suy ra \(BC = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 1} \right)}^2}}  = \sqrt {26} \), đồng thời \(\overrightarrow {{n_{BC}}}  = \left( {1; - 5} \right)\).

Mặt khác BC đi qua điểm B(3;5) nên phương trình BC là \(x - 5y + 22 = 0\)

Độ dài đường cao AH của tam giác ABC là \(AH = d\left( {A,BC} \right) = \frac{{\left| {1 - 5\left( { - 1} \right) + 22} \right|}}{{\sqrt {{1^2} + {{\left( { - 5} \right)}^2}} }} = \frac{{28}}{{\sqrt {26} }}\)

Diện tích của tam giác ABC là \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.\frac{{28}}{{\sqrt {26} }}.\sqrt {26}  = 14\)

Trả lời bởi Hà Quang Minh