Bài tập cuối chương VII

QL

Trong mặt phẳng toạ độ, cho A(1;-1), B(3; 5), C(-2; 4). Tính diện tích tam giác ABC.

HM
1 tháng 10 2023 lúc 20:20

Ta có \(\overrightarrow {BC}  = \left( { - 5; - 1} \right)\), suy ra \(BC = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 1} \right)}^2}}  = \sqrt {26} \), đồng thời \(\overrightarrow {{n_{BC}}}  = \left( {1; - 5} \right)\).

Mặt khác BC đi qua điểm B(3;5) nên phương trình BC là \(x - 5y + 22 = 0\)

Độ dài đường cao AH của tam giác ABC là \(AH = d\left( {A,BC} \right) = \frac{{\left| {1 - 5\left( { - 1} \right) + 22} \right|}}{{\sqrt {{1^2} + {{\left( { - 5} \right)}^2}} }} = \frac{{28}}{{\sqrt {26} }}\)

Diện tích của tam giác ABC là \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.\frac{{28}}{{\sqrt {26} }}.\sqrt {26}  = 14\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết