Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau:
a) 1, 4, 16, …;
b) \(2, - \frac{1}{2},\frac{1}{8},\; \ldots \)
Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau:
a) 1, 4, 16, …;
b) \(2, - \frac{1}{2},\frac{1}{8},\; \ldots \)
Viết năm số hạng đầu của mỗi dãy số \(\left( {{u_n}} \right)\) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức số hạng tổng quát của nó dưới dạng \({u_n} = {u_1}.{q^{n - 1}}\)
a) \({u_n} = 5n\)
b) \({u_n} = {5^n}\)
c) \({u_1} = 1,\;{u_n} = n.{u_{n - 1}}\),
d) \({u_1} = 1,\;{u_n} = 5.{u_{n - 1}}\)
a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.
Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.
b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).
Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).
Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).
c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).
có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).
Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.
d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).
Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).
Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).
Trả lời bởi Hà Quang MinhTrong một lọ nuôi cấy vi khuẩn, ban đầu có 5 000 con vi khuẩn và số lượng vi khuẩn tăng lên thêm 8% mỗi giờ. Hỏi sau 5 giờ thì số lượng vi khuẩn là bao nhiêu?
Số lượng vi khuẩn sau mỗi giờ tạo thành cấp số nhân với \({u_1} = 5000,\;q = 1,08\).
Suy ra công thức số hạng tổng quát: \({u_n} = 5000 \times \;1,{08^{n - 1}}\).
Vậy sau 5 giờ thì số lượng vi khuẩn là: \({u_5} = 5000 \times 1,{08^{5 - 1}} = 6802,44\).
Trả lời bởi Hà Quang MinhMột nhà máy tuyển thêm công nhân vào làm việc trong thời hạn ba năm và đưa ra hai phương án lựa chọn về lương như sau:
- Phương án 1: Lương tháng khởi điểm là 5 triệu đồng và sau mỗi quý, lương tháng sẽ tăng thêm 500 nghìn đồng.
- Phương án 2: Lương tháng khởi điểm là 5 triệu đồng và sau mỗi quý, lương tháng sẽ tăng thêm 5%.
Với phương án nào thì tổng lương nhận được sau ba năm làm việc của người công nhân sẽ lớn hơn?
Theo phương án 1, tiền lương mỗi quý tạo thành cấp số nhân với
\({u_1} = 5 \times 3 = 15\), công sai \(d = 0,5 \times 3 = 1,5\)
Công thức tổng quát \({u_n} = 15 + 1,5\left( {n - 1} \right)\)
Sau 3 năm làm việc \(\left( {n = 12} \right)\), lương của người nông dân là:
\(\frac{{12}}{2}\left[ {2 \times 15 + \left( {12 - 1} \right) \times 1,5} \right] = 279\) (triệu đồng)
Theo phương án 2, tiền lương mỗi quý sẽ tạo thành cấp số nhân với
\({u_1} = 5 \times 3 = 15\), công bội \(q = 1,05\)
Công thức tổng quát \({u_n} = 15 \times 1,{05^{n - 1}}\)
Sau 3 năm làm việc \(\left( {n = 12} \right),\) lương của người nông dân là:
\(\frac{{15\left( {1 - 1,{{05}^{12}}} \right)}}{{1 - 1,05}} = 238,757\) (triệu đồng)
Vậy thì theo phương án 1 thì tổng lương nhận được của người nông dân cao hơn.
Trả lời bởi Hà Quang MinhCho cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = a\) và công bội \(q \ne 1\)
Để tính tổng của n số hạng đầu\({S_n} = {u_1} + {u_2} + \ldots + {u_{n - 1}} + {u_n}\)
Thực hiện lần lượt các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng trên theo \({u_1}\) và q để được biểu thức tính tổng \({S_n}\) chỉ chứa \({u_1}\) và q.
b) Từ kết quả phần a, nhân cả hai vế với q để được biểu thức tính tích \(q.{S_n}\) chỉ chứa \({u_1}\) và \(q\).
c) Trừ từng vế hai đẳng thức nhận được ở cả a và b và giản ước các số hạng đồng dạng để tính \(\left( {1 - q} \right){S_n}\) theo \({u_1}\)và \(q\). Từ đó suy ra công thức tính \({S_n}\).
a) \({u_2} = {u_1}.q\)
\({u_3} = {u_1}.{q^2}\)
…
\({u_{n - 1}} = {u_1}.{q^{n - 2}}\)
\({u_n} = {u_1}.{q^{n - 1}}\)
\({S_n} = {u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}\)
b) \(q{S_n} = q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n}\)
c) \({S_n} - q{S_n} = \left( {{u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}} \right) - (q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n})\).
\(\begin{array}{l} \Leftrightarrow \left( {1 - q} \right){S_n} = {u_1} - {u_1}{q^n} = {u_1}\left( {1 - {q^n}} \right)\\ \Rightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\end{array}\)
Trả lời bởi Hà Quang MinhCho cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1}\) và công bội \(q\)
a) Tính các số hạng \({u_2},{u_3},{u_4},{u_5}\) theo \({u_1}\) và \(q\).
b) Dự đoán công thức tính số hạng thứ n theo \({u_1}\) và \(q\).
a) \({u_2} = {u_1}.q\)
\({u_3} = {u_2}.q = {u_1}.{q^2}\)
\({u_4} = {u_3}.q = {u_1}.{q^3}\)
\({u_5} = {u_4}.q = {u_1}.{q^4}\)
b) Từ a suy ra: \({u_n} = {u_1} \times {q^{n - 1}}\).
Trả lời bởi Hà Quang MinhDãy số không đổi a,a, a,... có phải là một cấp số nhân không?
Ta thấy tỉ số của các số hạng là \(\frac{a}{a} = 1, \forall n \ge 2\).
Như vậy, dãy số không đổi a,a, a,... là một cấp số nhân.
Trả lời bởi Hà Quang MinhCho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {3.2^n}\)
a) Viết năm số hạng đầu của dãy số này.
b) Dự đoán hệ thức truy hồi liên hệ giữa \({u_n}\) và \({u_{n - 1}}\).
a) Ta có: \({u_1} = 6,\;\;\;\;{u_2} = 12,\;\;\;\;\;{u_3} = 24,\;\;\;\;\;{u_4} = 48,\;\;\;\;\;{u_5} = 96\).
b) Hệ thức truy hồi liên hệ giữa \({u_n}\) và \({u_{n - 1}}\) là: \({u_n} = 2{u_{n - 1}}\).
Trả lời bởi Hà Quang MinhCho dãy số \({u_n}\)với \({u_n} = {2.5^n}\). Chứng minh rằng dãy số này là một cấp số nhân. Xác định số hạng đầu và công bội của nó.
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{2 \times {5^n}}}{{2 \times {5^{n - 1}}}} = \frac{{2 \times {5^n}}}{{2 \times {5^{n}.5^{- 1}}}} = 5,\;\forall n \ge 2\).
Vậy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân với \({u_1} = 10\) và công bội \(q = 5\).
Trả lời bởi Hà Quang MinhNếu cấp số nhân có công bội q = 1 thì tổng n số hạng đầu \(S_n\) của nó bằng bao nhiêu?
Nếu cấp số nhân có công bội q = 1 thì cấp số nhân là \(u_1, u_1, ..., u_1,...\) Khi đó
\({S_n} = u_1 + u_1 + ... + u_1 = n . u_1\) (tổng của n số hạng u_1).
Trả lời bởi Hà Quang Minh
a) Cấp số nhân có \({u_1} = 1,\;\;q = \;4\)
Số hạng tổng quát: \({u_n} = {4^{n - 1}}\)
Số hạng thứ 5: \({u_5} = {4^{5 - 1}} = 256\)
Số hạng thứ 100: \({u_{100}} = {4^{100 - 1}} = {4^{99}}\).
b) Cấp số nhân có \({u_1} = 2,\;q = - \frac{1}{4}\)
Số hạng tổng quát: \({u_n} = 2 \times {\left( { - \frac{1}{4}} \right)^{n - 1}}\)
Số hạng thứ 5: \({u_5} = 2 \times {\left( { - \frac{1}{4}} \right)^{5 - 1}} = \frac{1}{{128}}\)
Số hạng thứ 100: \({u_{100}} = 2 \times {\left( { - \frac{1}{4}} \right)^{100 - 1}} = \frac{ -1}{{2^{197}}}\)
Trả lời bởi Hà Quang Minh