Bài 4. Phương trình lượng giác cơ bản

QL
Hướng dẫn giải Thảo luận (1)

a)     Phương trình: \({x^2} - 3x + 2 = 0\,\,\,\left( 1 \right)\)

Ta có: \(\Delta  = 9 - 4.2 = 1 > 0\)

Phương trình (1) có hai nghiệm \(\left\{ \begin{array}{l}{x_1} = \frac{{3 + 1}}{{2.1}} = 2\\{x_1} = \frac{{3 - 1}}{{2.1}} = 1\end{array} \right.\) => \({S_1} = \left\{ {1;2} \right\}\)

Phương trình: \(\left( {x - 1} \right)\left( {x - 2} \right) = 0\,\,\,\left( 2 \right)\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\) => \({S_2} = \left\{ {1;2} \right\}\)

b)     Hai tập \({S_1};{S_2}\) có bằng nhau

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Hai phương trình \(x - 1 = 0\)và \(\frac{{{x^2} - 1}}{{x + 1}} = 0\) có tương đương vì:

\(\begin{array}{l}\frac{{{x^2} - 1}}{{x + 1}} = 0\\ \Leftrightarrow \frac{{\left( {x - 1} \right).\left( {x + 1} \right)}}{{x + 1}} = 0\\ \Leftrightarrow x - 1 = 0\end{array}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Khẳng định \(3x - 6 = 0 \Leftrightarrow 3x = 6\) đúng

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

\(\begin{array}{l}{\left( {x - 1} \right)^2} = 5x - 11\\ \Leftrightarrow {x^2} - 2x + 1 = 5x - 11\\ \Leftrightarrow {x^2} - 2x + 1 - 5x + 11 = 0\\ \Leftrightarrow {x^2} - 7x - 10 = 0\\ \Leftrightarrow (x - 5)(x - 2) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 2\end{array} \right.\end{array}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a)     Hoành độ của \({A_0}\) là \(\frac{\pi }{6}\)

Hoành độ của \({B_0}\) là \(\frac{{5\pi }}{6}\)

b)     Hoành độ của \({A_1}\) là \(\frac{{13\pi }}{6}\)

Hoành độ của \({B_1}\) là \(\frac{{17\pi }}{6}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) \(\sin x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \pi  - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.\)

b) \(\begin{array}{l}\sin x = \sin {55^ \circ } \Leftrightarrow \left[ \begin{array}{l}x = {55^ \circ } + k{.360^ \circ }\\x = {180^ \circ } - {55^ \circ } + k{.360^ \circ }\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {55^ \circ } + k{.360^ \circ }\\x = {125^ \circ } + k{.360^ \circ }\end{array} \right.\\\end{array}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

\(\sin 2x = \sin \left( {x + \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{4} + k2\pi \\2x = \pi  - \left( {x + \frac{\pi }{4}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\3x = \frac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{\pi }{4} + \frac{{k2\pi }}{3}\end{array} \right.\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a)     Hoành độ của \({C_0}\) là \( - \frac{\pi }{3}\)

Hoành độ của \({D_0}\) là \(\frac{\pi }{3}\)

b)     Hoành độ của \({C_1}\) là \(\frac{{5\pi }}{3}\)

Hoành độ của \({D_1}\) là \(\frac{{7\pi }}{3}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) \(\cos x =  - \frac{1}{2} \Leftrightarrow \cos x = \cos \left( {\frac{{2\pi }}{3}} \right) \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x =  - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\)

b) \(\cos x = \cos \left( { - {{87}^ \circ }} \right) \Leftrightarrow \left[ \begin{array}{l}x =  - {87^ \circ } + k.360\\x = {87^ \circ } + k{.360^ \circ }\end{array} \right.\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

+) Vệ tinh cách mặt đất 1 000 km thì h=1 000

Khi đó

 \(\begin{array}{l}1000 = 550 + 450.\cos \frac{\pi }{{50}}t\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = 1\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = \cos 0\\ \Leftrightarrow \frac{\pi }{{50}}t = 0 + k2\pi \\ \Leftrightarrow t = 100.k\,\,\,\,;k \in N*\end{array}\)

+) Vệ tinh cách mặt đất 250 km thì h=250

Khi đó

 \(\begin{array}{l}250 = 550 + 450.\cos \frac{\pi }{{50}}t\\ \Leftrightarrow \cos \frac{\pi }{{50}}t =  - \frac{2}{3}\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{50}}t = \arccos \left( { - \frac{2}{3}} \right) + k2\pi \\\frac{\pi }{{50}}t =  - \arccos \left( { - \frac{2}{3}} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = \frac{{50}}{\pi }\left[ {\arccos \left( { - \frac{2}{3}} \right) + k2\pi } \right]\\t = \frac{{50}}{\pi }\left[ { - \arccos \left( { - \frac{2}{3}} \right) + k2\pi } \right]\end{array} \right.;k \in N*\end{array}\)

+) Vệ tinh cách mặt đất 100 km thì h=100

Khi đó

\(\begin{array}{l}100 = 550 + 450.\cos \frac{\pi }{{50}}t\\ \Leftrightarrow \cos \frac{\pi }{{50}}t =  - 1\\ \Leftrightarrow \cos \frac{\pi }{{50}}t = \cos \pi \\ \Leftrightarrow \frac{\pi }{{50}}t = \pi  + k2\pi \\ \Leftrightarrow t = 50 + 100k\,\,\,\,;k \in N*\end{array}\)

Trả lời bởi Hà Quang Minh