Bài 4. Hai mặt phẳng vuông góc

H24
Hướng dẫn giải Thảo luận (1)

Các góc nhị diện đó là các góc nhị diện vuông

Trả lời bởi Nguyễn Lê Phước Thịnh
H24
Hướng dẫn giải Thảo luận (1)

Những ví dụ trong thực tiễn minh hoạ hình ảnh hai mặt phẳng vuông góc là: Mặt tường vuông góc với sàn nhà, mặt ngang vuông góc với mặt đứng của bậc thang,…

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

a: \(a\perp\left(Q\right)\)

b: Hai mặt phẳng (P) và (Q) có vuông góc với nhau

Trả lời bởi Nguyễn Lê Phước Thịnh
H24
Hướng dẫn giải Thảo luận (2)

\(ABCD\) là hình thoi \( \Rightarrow AC \bot B{\rm{D}}\)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot B{\rm{D}}\)

\(\left. \begin{array}{l} \Rightarrow B{\rm{D}} \bot \left( {SAC} \right)\\B{\rm{D}} \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow \left( {SAC} \right) \bot \left( {SB{\rm{D}}} \right)\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

a) Ta có:

\(\left. \begin{array}{l}A \in \left( {AOS} \right) \cap \left( {AOB} \right)\\O \in \left( {AOS} \right) \cap \left( {AOB} \right)\end{array} \right\} \Rightarrow AO = \left( {AOS} \right) \cap \left( {AOB} \right)\)

b) \(\widehat {AOS} = {90^ \circ } \Rightarrow SO \bot AO\)

Vậy \(SO\) có vuông góc với giao tuyến của hai mặt phẳng \(\left( {AOS} \right)\) và \(\left( {AOB} \right)\).

c) \(\widehat {AOS} = {90^ \circ } \Rightarrow SO \bot AO\)

\(\widehat {AOB} = {90^ \circ } \Rightarrow AO \bot BO\)

Vậy \(\widehat {SOB}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {S,AO,B} \right]\)

Vì \(\left( {AOS} \right) \bot \left( {AOB} \right)\) nên \(\widehat {SOB} = {90^ \circ }\)

\(\left. \begin{array}{l} \Rightarrow SO \bot OB\\SO \bot OA\end{array} \right\} \Rightarrow SO \bot \left( {AOB} \right)\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Ta có:

\(\left. \begin{array}{l}\left( {ABD} \right) \bot \left( {BCD} \right)\\\left( {ABD} \right) \cap \left( {BCD} \right) = BD\\C{\rm{D}} \subset \left( {BCD} \right)\\C{\rm{D}} \bot B{\rm{D}}\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {ABD} \right) \Rightarrow C{\rm{D}} \bot A{\rm{D}}\)

Vậy tam giác \(ACD\) vuông tại \(D\).

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

gáy sách có vuông góc với mặt bàn

Trả lời bởi Nguyễn Lê Phước Thịnh
H24
Hướng dẫn giải Thảo luận (1)

a) Ta có:

\(\left. \begin{array}{l}\left. \begin{array}{l}SA \bot SB\\SA \bot SC\end{array} \right\} \Rightarrow SA \bot \left( {SBC} \right)\\SA \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow \left( {SAB} \right) \bot \left( {SBC} \right)\)

b) Ta có:

\(\left. \begin{array}{l}\left. \begin{array}{l}SA \bot SB\\SA \bot SC\end{array} \right\} \Rightarrow SA \bot \left( {SBC} \right)\\SA \subset \left( {SCA} \right)\end{array} \right\} \Rightarrow \left( {SCA} \right) \bot \left( {SBC} \right)\)

c) Ta có:

\(\left. \begin{array}{l}\left. \begin{array}{l}SA \bot SB\\SB \bot SC\end{array} \right\} \Rightarrow SB \bot \left( {SCA} \right)\\SB \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow \left( {SAB} \right) \bot \left( {SCA} \right)\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

\(\left(P\right)\perp\left(R\right);\left(Q\right)\perp\left(R\right)\)

Trả lời bởi Nguyễn Lê Phước Thịnh
H24
Hướng dẫn giải Thảo luận (1)

Cho hai mặt phẳng \(\left( P \right),\left( Q \right)\) vuông góc với nhau. Ta cần chứng minh tồn tại một đường thẳng \(a \subset \left( P \right)\) sao cho \(a \bot \left( Q \right)\).

Gọi \(d = \left( P \right) \cap \left( Q \right)\). Lấy \(M \in \left( P \right),N \in \left( Q \right)\) sao cho \(M,N \notin d\).

Gọi góc \(\widehat {aOb}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {M,d,N} \right]\).

Vì \(\left( P \right) \bot \left( Q \right)\) nên góc nhị diện đó là góc nhị diện vuông. Vậy \(\widehat {aOb} = {90^ \circ } \Rightarrow a \bot b\).

Mà \(a \bot d\)

\( \Rightarrow a \bot \left( Q \right)\)

Trả lời bởi Quoc Tran Anh Le