Bài 4: Ba đường conic trong mặt phẳng tọa độ

QL
Hướng dẫn giải Thảo luận (1)

Qua bài học ta thấy rằng hình dạng của các đường là phương trình chính tắc của chúng như sau:

(E) có tên gọi là elip, phương trình: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)

(H) có tên gọi là hypebol, phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

(P) có tên gọi là parabol, phương trình: \({y^2} = 2px\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có chiều dài vòng dây là:

\(M{F_1} + {F_1}{F_2} + {F_2}M = 2a + 2c \Rightarrow M{F_1} + {F_2}M = 2a + 2c - {F_1}{F_2} = 2a\)

Vậy tổng khoảng cách \({F_1}M\) và \({F_2}M\) là 2a

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Ta có:

\(\overrightarrow {{F_1}M}  = \left( {x + c;y} \right) \Rightarrow {F_1}M = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} \)

\(\overrightarrow {{F_2}M}  = \left( {x - c;y} \right) \Rightarrow {F_2}M = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \)

b) Ta có \(M(x;y) \in (E)\) nên \({F_1}M + {F_2}M = 2a \Leftrightarrow \sqrt {{{\left( {x + c} \right)}^2} + {y^2}}  + \sqrt {{{\left( {x - c} \right)}^2} + {y^2}}  = 2a\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Dựa vào hình vẽ ta thấy \(a = 3,c = 2 \Rightarrow b = \sqrt {{a^2} - {c^2}}  = \sqrt {{3^2} - {2^2}}  = \sqrt 5 \)

Vậy phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Chiều cao là 4 m tương ứng với \(b = 4\)

Chiều rộng bằng 10 m nên \(2a = 10 \Rightarrow a = 5\)

Vậy phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{16} = 1\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Khi điểm trùng với điểm ta có:

\(M{F_1} - M{F_2} = A{F_1} - A{F_2} = AB - A{F_2} = d - l = 2a\)

b) Tương tự khi điểm trùng với điểm ta có:

\(M{F_2} - M{F_1} = A{F_2} - A{F_1} = AB - A{F_1} = d - l = 2a\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Ta có:

\(\overrightarrow {{F_1}M}  = \left( {x + c;y} \right) \Rightarrow {F_1}M = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} \)

\(\overrightarrow {{F_2}M}  = \left( {x - c;y} \right) \Rightarrow {F_2}M = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \)

b) Ta có \(M(x;y) \in (E)\) nên \(\left| {{F_1}M - {F_2}M} \right| = 2a \Leftrightarrow \left| {\sqrt {{{\left( {x + c} \right)}^2} + {y^2}}  - \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} } \right| = 2a\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(2c = 10 \Rightarrow c = 5,2b = 6 \Rightarrow b = 3\)

Suy ra \(a = \sqrt {{c^2} - {b^2}}  = \sqrt {{5^2} - {3^2}}  = 4\)

Vậy phương trình chính tắc của hypebol có dạng \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)

Trả lời bởi Hà Quang Minh
QL

Gọi khoảng cách từ tâm đối xứng đến đỉnh tháp là z

Suy ra khoảng cách từ tâm đối xứng đến đáy tháp là 2z

Ta có \(z + 2z = 120 \Rightarrow z = 40\)

Thay \(y = 40\) vào phương trình \(\frac{{{x^2}}}{{{{27}^2}}} - \frac{{{y^2}}}{{{{40}^2}}} = 1\) ta tìm được \(x = 27\sqrt 2 \)

Thay \(y = 80\) vào phương trình \(\frac{{{x^2}}}{{{{27}^2}}} - \frac{{{y^2}}}{{{{40}^2}}} = 1\) ta tìm được \(x = 27\sqrt 5 \)

Vậy bán kính đường tròn nóc và bán kính đường tròn đáy của tháp lần lượt là \(27\sqrt 2 \) và \(27\sqrt 5 \)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Đồ thị của hàm số (*) vừa tìm được có dạng là hàm số bậc 2 khuyết và tập hợp các điểm cách đều nhau qua một đường thẳng, đồ thị của hàm bậc 2 này có tên gọi là parabol.

Trả lời bởi Hà Quang Minh