Bài 31. Định nghĩa và ý nghĩa của đạo hàm

H24
Hướng dẫn giải Thảo luận (1)

Ta có:

 \(y'=\left(-2x^2\right)'=-4x\Rightarrow y'\left(-1\right)=-4\cdot\left(-1\right)=4\)

\(y_0=-2\cdot\left(-1\right)^2=-2\)

Phương trình tiếp tuyến là: \(y=4\left(x+1\right)-2=4x+2\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Chọn hệ trục tọa độ Oxy sao cho O là trung điểm AB, tia Ox trùng với tia OB, tia Oy hướng lên trên.

Khi đó \(A\left(-200;0\right),B\left(200;0\right)\). Gọi chiều cao giới hạn của cầu là h (h > 0), suy ra đỉnh cầu có tọa độ (0;h)

Ta tìm được phương trình parabol của cầu là: \(y=-\dfrac{h}{200^2}\cdot x^2+h\)

Ta có: \(y'=-\dfrac{2h}{200^2}\cdot x\), suy ra hệ số góc xác định độ dốc của mặt cầu là

\(k=y'=-\dfrac{2h}{200^2}\cdot x;-200\le x\le200\)

Vì độ dốc của mặt cầu không quá 10o nên ta có: \(\dfrac{h}{100}\le tan10^o\Leftrightarrow h\le17,6\)

Vậy chiều cao giới hạn từ đỉnh cầu tới mặt đường là 17,6cm

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

a: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{x^2+1-x_0^2-1}{x-x_0}\)

\(=\lim\limits_{x\rightarrow x0}\dfrac{\left(x-x0\right)\left(x+x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}x+x0=x0+x0=2x0\)

b: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}\)

\(=\lim\limits_{x\rightarrow x0}\dfrac{kx+c-k\cdot x0-c}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{k\left(x-x0\right)}{x-x0}\)

=\(\lim\limits_{x\rightarrow x0}k=k\)

 

 

Trả lời bởi Nguyễn Lê Phước Thịnh
H24
Hướng dẫn giải Thảo luận (1)

a, Ta có: \(y'=\left(x^2\right)'=2x\Rightarrow y'\left(1\right)=2\cdot1=2\)

Vậy hệ số góc của tiếp tuyến của parabol \(y=x^2\) tại điểm có hoàng độà k = 2.

b, Ta có: \(y_0=1^2=1\)

Vậy phương trình tiếp tuyến là \(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=2\left(x-1\right)+1=2x-1\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

a, Hệ số góc của cát tuyến PQ là \(k_{PQ}=\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}\)

b, Khi \(x\rightarrow x_0\) thì vị trí của điểm ​\(Q\left(x;f\left(x\right)\right)\)​ trên đồ thị (C) sẽ tiến gần đến điểm \(P\left(x_0;f\left(x_0\right)\right)\) và khi \(x=x_0\) thì hai điểm này sẽ trùng nhau.

c, Nếu điểm Q di chuyển trên (C) tới điểm P mà \(k_{PQ}\) có giới hạn hữu hạn k thì cát tuyến PQ cũng sẽ tiến đến gần vị trí tiếp tuyến của đồ thị (C) tại điểm P. Vì vậy, giới hạn của cát tuyến QP sẽ là đường thẳng tiếp tuyến tại điểm P

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

a: \(f'\left(x_0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{c-c}{x-x0}=0\)

b: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{x-x0}{x-x0}=1\)

Trả lời bởi Nguyễn Lê Phước Thịnh
H24
Hướng dẫn giải Thảo luận (1)

a: Cường độ trung bình là:

\(I\left(t\right)=\dfrac{Q\left(t\right)-Q\left(t0\right)}{t-t0}\)

b: Cho biết cường độ trung bình khi t chạy tới t0 thì ngày càng được thể hiện chính xác hơn, rõ ràng hơn.

Trả lời bởi Nguyễn Lê Phước Thịnh
H24
Hướng dẫn giải Thảo luận (1)

a: Vận tốc trung bình là;

\(\dfrac{s\left(t\right)-s\left(t0\right)}{t-t0}\)

b: Cho ta biết một điều đó là Khi t càng tới gần t0, có nghĩa là |t-t0| càng nhỏ thì vận tốc trung bình càng thể hiện được chính xác hơn mức độ nhanh chậm của chuyển động tại thời điểm t0.

Trả lời bởi Nguyễn Lê Phước Thịnh
H24
Hướng dẫn giải Thảo luận (1)

\(\begin{array}{c}f'\left( { - 1} \right) = \mathop {\lim }\limits_{x \to  - 1} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \frac{{ - {x^2} + 2x + 1 + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \frac{{ - {x^2} + 2x + 3}}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to  - 1} \frac{{\left( {x + 1} \right)\left( {3 - x} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \left( {3 - x} \right) = 3 + 1 = 4\end{array}\)

Vậy \(f'\left( { - 1} \right) = 4\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Ta có: \(y'\left(\dfrac{1}{2}\right)=2\cdot\dfrac{1}{2}=1\)

Vậy hệ số góc của tiếp tuyến của parabol \(y=x^2\) tại điểm có hoàng độ \(x_0=\dfrac{1}{2}\) là k = 1.

Trả lời bởi Hà Quang Minh