Bài 3. Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

H24
Hướng dẫn giải Thảo luận (1)

loading...

Kẻ \(CH \bot AG\left( {H \in AG} \right),DK \bot AG\left( {K \in AG} \right)\)

Gọi \(I = BE \cap CH,J = BE \cap DK\).

\(ABEG\) là hình chữ nhật \( \Rightarrow BE = AB = 12\)

\(C{\rm{D}}KH,C{\rm{D}}JI\) là hình chữ nhật \( \Rightarrow HK = IJ = C{\rm{D}} = 1\)

\(ABIH,EGKJ\) là hình chữ nhật \( \Rightarrow IH = JK = AB = 2\)

\(AH = GK = BI = EJ = \frac{{AG - HK}}{2} = \frac{{12 - 1}}{2} = 5,5\)

\(CH = d\left( {C,AG} \right) = 4 \Rightarrow CI = CH - IH = 4 - 2 = 2\)

\(\Delta BCI\) vuông tại \(I\)\( \Rightarrow \tan \widehat {CBI} = \frac{{CI}}{{BI}} = \frac{2}{{5,5}} = \frac{4}{{11}} \Rightarrow \widehat {CBI} \approx 19,{98^ \circ }\)

\(\begin{array}{l} \Rightarrow x = \widehat {ABI} + \widehat {CBI} = {90^ \circ } + 19,{98^ \circ } = 110,{0^ \circ }\\ \Rightarrow y = {180^ \circ } - x = {180^ \circ } - 110,{0^ \circ } = 70,{0^ \circ }\end{array}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

loading...

Kẻ \(AH \bot BC\left( {H \in BC} \right)\)

\(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)

\( \Rightarrow BC \bot \left( {SAH} \right) \Rightarrow BC \bot SH\)

Vậy \(\widehat {SHA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,BC,S} \right]\)

\( \Rightarrow \widehat {SHA} = \alpha \)

\(\begin{array}{l}{S_{\Delta ABC}} = \frac{1}{2}BC.AH,{S_{\Delta SBC}} = \frac{1}{2}BC.SH\\ \Rightarrow \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta SBC}}}} = \frac{{\frac{1}{2}BC.AH}}{{\frac{1}{2}BC.SH}} = \frac{{AH}}{{SH}} = \cos \widehat {SHA} = \cos \alpha \end{array}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

loading...

a) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB,SA \bot A{\rm{C}}\)

Vậy \(\widehat {BA{\rm{C}}}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,SA,C} \right]\)

\(AB = BC = AC = a \Rightarrow \Delta ABC\) đều \( \Rightarrow \widehat {BA{\rm{C}}} = \widehat {ABC} = {60^ \circ }\)

Vậy số đo của góc nhị diện \(\left[ {B,SA,C} \right]\) bằng \({60^ \circ }\).

b) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB,SA \bot A{\rm{D}}\)

Vậy \(\widehat {BA{\rm{D}}}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,SA,D} \right]\)

\(ABCD\) là hình thoi \( \Rightarrow \widehat {BA{\rm{D}}} = {180^ \circ } - \widehat {ABC} = {180^ \circ } - {60^ \circ } = {120^ \circ }\)

Vậy số đo của góc nhị diện \(\left[ {B,SA,D} \right]\) bằng \({120^ \circ }\).

c) \(SA \bot \left( {ABCD} \right) \Rightarrow \left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

\(\Delta SAC\) vuông tại \(A \Rightarrow \tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{a}{a} = 1 \Rightarrow \widehat {SCA} = {45^ \circ }\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = {45^ \circ }\).

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Cách 1:

\(\dfrac{BC}{sin\widehat{A}}=\dfrac{AB}{sin\widehat{C}}=\dfrac{AC}{sin\widehat{B}}\)

Ta có \(\widehat{C}=\widehat{B}\) ( tam giác ABC cân tại A )

\(\widehat{B}+\widehat{C}=180^0-\widehat{A}\) \(\Leftrightarrow2\widehat{B}=180^0-\widehat{A}\Leftrightarrow\widehat{B}=90^0-\dfrac{\widehat{A}}{2}\)

\(\Rightarrow sin\widehat{B}=sin\left(90^0-\dfrac{\widehat{A}}{2}\right)=cos\left(\dfrac{\widehat{A}}{2}\right)\)

\(\Rightarrow\dfrac{BC}{sin\widehat{A}}=\dfrac{AC}{cos\left(\dfrac{\widehat{A}}{2}\right)}\) \(\Leftrightarrow\sqrt{3}.cos\left(\dfrac{\widehat{A}}{2}\right)=2.sin\left(\dfrac{\widehat{A}}{2}\right).cos\left(\dfrac{\widehat{A}}{2}\right)\)

( tam giác ABC có \(\widehat{A}\ne180^0\Rightarrow\dfrac{\widehat{A}}{2}\ne90^0\Rightarrow cos\left(\dfrac{\widehat{A}}{2}\right)\ne0\) )

\(\Rightarrow\sqrt{3}=2sin\left(\dfrac{\widehat{A}}{2}\right)\) \(\Leftrightarrow\dfrac{\widehat{A}}{2}=60^0\Leftrightarrow\widehat{A}=120^0\)

Vậy độ mở của màn hình máy tính là \(120^0\)

Cách 2: Do AB=AC nên tam giác ABC cân tại A

Kẻ \(AH\perp BC\) tại H

Tam giác ABC cân tại A có AH vừa là đường cao, vừa là đường phân giác, vừa là đường trung tuyến

\(\Rightarrow\)H là trung điểm của BC \(\Rightarrow BH=\dfrac{BC}{2}=15\sqrt{3}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông có:

\(sin\widehat{BAH}=\dfrac{BH}{AB}=\dfrac{\sqrt{3}}{2}\Rightarrow\widehat{BAH}=60^0\)

\(\Rightarrow\widehat{BAC}=2\widehat{BAH}=120^0\)

Vậy độ mở của màn hình máy tính là \(120^0\)

Trả lời bởi Gấuu
H24
Hướng dẫn giải Thảo luận (1)

loading...

a) \(SO \bot \left( {ABCD} \right) \Rightarrow \left( {SA,\left( {ABCD} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO}\)

Tam giác \(SAC\) là tam giác đều \( \Rightarrow \widehat {SAO} = {60^ \circ }\)

\( \Rightarrow \left( {SA,\left( {ABCD} \right)} \right) = {60^ \circ }\)

b) \(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)

\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AC\)

\( \Rightarrow AC \bot \left( {SB{\rm{D}}} \right)\)

\( \Rightarrow \left( {SA,\left( {SB{\rm{D}}} \right)} \right) = \left( {SA,SO} \right) = \widehat {ASO} = \frac{1}{2}\widehat {ASC} = {30^ \circ }\)

c) \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot MO,SO \bot DO\)

Vậy \(\widehat {MO{\rm{D}}}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {M,SO,D} \right]\)

\(ABCD\) là hình vuông \(\widehat {AOD} = {90^ \circ }\)

\(\Delta AMO\) vuông cân tại \(M \Rightarrow \widehat {AOM} = {45^ \circ }\)

\( \Rightarrow \widehat {MO{\rm{D}}} = \widehat {AOM} + \widehat {AO{\rm{D}}} = {45^ \circ } + {90^ \circ } = {135^ \circ }\)

Vậy số đo của góc nhị diện \(\left[ {M,SO,D} \right]\) bằng \({135^ \circ }\).

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

loading...

a) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB,SA \bot A{\rm{D}}\)

Vậy \(\widehat {BA{\rm{D}}}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,SA,D} \right]\)

\(ABCD\) là hình vuông \( \Rightarrow \widehat {BA{\rm{D}}} = {90^ \circ }\)

Vậy số đo của góc nhị diện \(\left[ {B,SA,D} \right]\) bằng \({90^ \circ }\).

b) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB,SA \bot A{\rm{C}}\)

Vậy \(\widehat {BA{\rm{C}}}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,SA,C} \right]\)

\(ABCD\) là hình vuông \( \Rightarrow \widehat {BA{\rm{C}}} = {45^ \circ }\)

Vậy số đo của góc nhị diện \(\left[ {B,SA,C} \right]\) bằng \({45^ \circ }\).

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Đổi \(200km/h = \frac{{500}}{9}m/s\)

Mô hình hoá như hình vẽ, với \(OA\) là quãng đường máy bay bay được sau 2 giây, \(OH\) là độ cao của máy bay so với mặt đấy khi máy bay bay được sau 2 giây, độ lớn của góc \(\widehat {AOH}\) chỉ số đo góc giữa máy bay với mặt đất.

Sau 2 giây máy bay bay được quãng đường là: \(\frac{{500}}{9}.2 = \frac{{1000}}{9}\left( m \right)\)

Vì tam giác \(OAH\) vuông tại \(H\) nên ta có:

\(AH = OA.\sin \widehat {AOH} = \frac{{1000}}{9}.\sin {20^ \circ } \approx 38,0\left( m \right)\)

Vậy độ cao của máy bay so với mặt đất là 38 mét sau khi máy bay rời khỏi mặt đất 2 giây.

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

a) Vì \(MH \bot \left( P \right),O \in \left( P \right)\) nên hình chiếu của đường thẳng \(MO\) trên mặt phẳng \(\left( P \right)\) là đường thẳng \(HO\)

b) Góc giữa đường thẳng \(MO\) và hình chiếu của đường thẳng đó trên mặt phẳng \(\left( P \right)\) là góc \(\widehat {MOH}\).

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Trong \(\left( P \right)\) ta có:

\(\left. \begin{array}{l}Ox \bot d\\O'x' \bot d\end{array} \right\} \Rightarrow Ox\parallel O'x'\)

Trong \(\left( Q \right)\) ta có:

\(\left. \begin{array}{l}Oy \bot d\\O'y' \bot d\end{array} \right\} \Rightarrow Oy\parallel O'y'\)

Vậy \(\left( {Ox,Oy} \right) = \left( {O'x',O'y'} \right)\) hay số đo của hai góc \(xOy\) và \(x'Oy'\) bằng nhau.

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

loading...

Mô hình hoá như hình vẽ, với \(AB\) là chiều dài con dốc, \(AH\) là độ cao của điểm \(A\) so với mặt nước biển, \(BK\) là độ cao của điểm \(B\) so với mặt nước biển, \(BI\) là chiều cao của con dốc, độ lớn của góc \(\widehat {BAI}\) chỉ độ dốc.

Ta có: \(AH = 200,BK = 220,AB = 120\).

\(AHKB\) là hình chữ nhật \( \Rightarrow IK = AH = 200 \Rightarrow BI = BK - IK = 220 - 200 = 20\)

Vì tam giác \(ABI\) vuông tại \(I\) nên ta có:

\(\sin \widehat {ABI} = \frac{{BI}}{{AB}} = \frac{{20}}{{120}} = \frac{1}{6} \Rightarrow \widehat {ABI} \approx 9,{59^ \circ }\) tương ứng với 10,66%

Vậy độ dốc của con dốc đó là 10,66%.

Trả lời bởi Quoc Tran Anh Le