Bài 1. Tập hợp các số hữu tỉ

QL
Hướng dẫn giải Thảo luận (1)

Chỉ số WHtR của ông An là: \(\frac{{108}}{{180}} = 0,6\)

Chỉ số WHtR của ông Chung là: \(\frac{{70}}{{160}} = 0,4375\)

Ta thấy: Chỉ số WHtR của ông An lớn hơn 0,57 và nhỏ hơn 0,63 nên ông An thừa cân.

Chỉ số WHtR của ông Chung lớn hơn 0,42 và nhỏ hơn hoặc bằng 0,52 nên ông Chung có chỉ số tốt.

Vậy nếu tính theo chỉ số WHtR, sức khỏe của ông Chung tốt hơn.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Đúng vì \(0,25{\rm{ }} = \frac{{25}}{{100}} = \frac{1}{4}\) là số hữu tỉ

b) Đúng vì \(\frac{{ - 6}}{7}\) là số hữu tỉ

c) Sai vì \( - 235 = \frac{{ - 235}}{1}\) là số hữu tỉ.

Chú ý: Một số nguyên cũng là một số hữu tỉ.

Vậy các khẳng định đúng là a và b.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)
QL
Hướng dẫn giải Thảo luận (1)

Cách 1: Ta có:

 \(\begin{array}{l}5\frac{1}{4} = \frac{{5.4 + 1}}{4} = \frac{{21}}{4} = \frac{{42}}{8}\\ - 2 = \frac{{ - 16}}{8}\\3,125 = \frac{{3125}}{{1000}} = \frac{{25}}{8}\\ - \frac{3}{2} = \frac{{ - 12}}{8}\end{array}\)

Vì -16 < -12 < 25 < 42 nên \(\frac{{ - 16}}{8} < \frac{{ - 12}}{8} < \frac{{25}}{8} < \frac{{42}}{8}\) hay -2 < \(\frac{{ - 3}}{2}\) < 3,125 < \(5\frac{1}{4}\)

Vậy các số hữu tỉ trên sắp xếp theo thứ tự từ bé đến lớn là: -2; \(\frac{{ - 3}}{2}\); 3,125; \(5\frac{1}{4}\)

Cách 2: Ta có: \(5\frac{1}{4}\)= 5,25

\(\frac{{ - 3}}{2}\)= -1,5

Vì -2 < -1,5 < 0 < 3,125 < 5,25 nên -2 < \(\frac{{ - 3}}{2}\) < 3,125 < \(5\frac{1}{4}\)

Vậy các số hữu tỉ trên sắp xếp theo thứ tự từ bé đến lớn là: -2; \(\frac{{ - 3}}{2}\); 3,125; \(5\frac{1}{4}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Ta có: \( - 1,5 = \frac{{ - 15}}{{10}} = \frac{{ - 3}}{2}\)

Vì -3 < 5 nên \(\frac{{ - 3}}{2} < \frac{5}{2}\)hay -1,5 < \(\frac{5}{2}\)

b) Ta có: \( - 0,375 = \frac{{ - 375}}{{1000}} = \frac{{ - 3}}{8}\)

Vì 3 < 5 nên -3 > -5, do đó \(\frac{{ - 3}}{8} > \frac{{ - 5}}{8}\)

Vậy -0,375 > \( - \frac{5}{8}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.

Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)

Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)

Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

\(\begin{array}{l}a) - 2,5 = \frac{{ - 5}}{2} = \frac{{ - 10}}{4} = \frac{{ - 15}}{6} = ....\\b)2\frac{3}{4} = \frac{{11}}{4} = \frac{{22}}{8} = \frac{{33}}{{12}} = ...\end{array}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Chỉ số WHtR của ông An là: \(\frac{{108}}{{180}} = 0,6\)

Chỉ số WHtR của ông Chung là: \(\frac{{70}}{{160}} = 0,4375\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Các số \(8; - 3,3;3\frac{2}{3}\) đều là các số hữu tỉ vì các số này đều viết được dưới dạng phân số \(\frac{a}{b}(a,b \in Z,b \ne 0)\)

(\(8 = \frac{8}{1}; - 3,3 = \frac{{ - 33}}{{10}};3\frac{2}{3} = \frac{{11}}{3}\))

Số đối của 8 là -8

Số đối của -3,3 là 3,3

Số đối của \(3\frac{2}{3}\) là \( - 3\frac{2}{3}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Điểm -1,5 nằm trước điểm \(\frac{5}{2}\) trên trục số.

Chú ý: Nhận xét: Trên trục số nằm ngang, điểm biểu diễn số hữu tỉ nhỏ hơn nằm trước điểm biểu diễn số hữu tỉ lớn hơn.

Trả lời bởi Hà Quang Minh