Chương I - Căn bậc hai. Căn bậc ba

NS

x+y+z+8=2\(\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

T3
4 tháng 9 2021 lúc 15:50

tham khảo:

x+y+z+8=2√x−1+4√y−2+6√z−3a)x+y+z+8=2x-1+4y-2+6z-3 ĐK: x≥1;y≥2;z≥3x≥1;y≥2;z≥3

⇔x+y+z+8−2√x−1−4√y−2−6√z−3=0⇔x+y+z+8-2x-1-4y-2-6z-3=0

⇔(x−1−2√x−1+1)+(y−2−4√y−2+4)+(z−3−6√z−3+9)=0⇔(x-1-2x-1+1)+(y-2-4y-2+4)+(z-3-6z-3+9)=0

⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0⇔(x-1-1)2+(y-2-2)2+(z-3-3)2=0

Do (√x−1−1)2≥0;(√y−2−2)2≥0;(√z−3−3)2≥0(x-1-1)2≥0;(y-2-2)2≥0;(z-3-3)2≥0

⇒(√x−1−1)2+(√y−2−2)2+(√z−3−3)2≥0⇒(x-1-1)2+(y-2-2)2+(z-3-3)2≥0

Dấu = xảy ra khi ⎧⎪ ⎪⎨⎪ ⎪⎩√x−1=1√y−2=2√z−3=3⇔⎧⎪⎨⎪⎩x−1=1y−2=4z−3=9⇔⎧⎪⎨⎪⎩x=2(tm)y=6(tm)z=12(tm){x-1=1y-2=2z-3=3⇔{x-1=1y-2=4z-3=9⇔{x=2(tm)y=6(tm)z=12(tm)

Vậy (x;y;z)=(2;6;12)

Bình luận (0)
HP
4 tháng 9 2021 lúc 16:03

ĐK: \(x\ge1;y\ge2;z\ge3\)

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=6\left(tm\right)\\z=12\left(tm\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
VH
Xem chi tiết
PT
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
QL
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết