\(\frac{1}{x+y+z}+\frac{1}{3}=\frac{1}{x+y+z}+\frac{1}{3xyz}\ge\frac{2}{\sqrt{3xyz\left(x+y+z\right)}}\ge\frac{2}{xy+yz+zx}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
\(\frac{1}{x+y+z}+\frac{1}{3}=\frac{1}{x+y+z}+\frac{1}{3xyz}\ge\frac{2}{\sqrt{3xyz\left(x+y+z\right)}}\ge\frac{2}{xy+yz+zx}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
cho x,y,z ≥ 0 thỏa mãn x^2 +y^2 +z^2 =1. tìm GTNN, GTLN của T = x/1-yz + y/1-zx + z/1-xy
Cho x, y, z thỏa mãn: x + y + z = 7; x2 + y2 + z2 = 23; xyz = 3
Tính giá trị : A= \(\dfrac{1}{xy+z-6}+\dfrac{1}{yz+x-6}+\dfrac{1}{zx+y-6}\)
Cho ba số x,y,z thõa: xyz=1 tính:
\(M=\dfrac{1}{1+x+xy}+\dfrac{1}{1+y+yz}+\dfrac{1}{1+z+zx}\)
Tìm các số nguyên dương x, y, z với x>y>z thoả mãn phương trình xyz+xy+yz+zx+x+y+z=1000
cho xyz =3 tính A=\(\dfrac{x}{xy+x+3}+\dfrac{y}{yz+y+1}+\dfrac{z}{zx+z+3}\)
Cho xy+yz+zx=0.CMR :\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
x,y,z >0 thỏa mãn xy+ yz+zx ≥3
Tìm GTNN của P=\(\frac{x^3}{1+x}+\frac{y^3}{1+y}+\frac{z^3}{1+z}\)
Giúp mình với ☺
Cho \(x,y,z>0\) thỏa mãn \(xy+yz+zx\ge3\)
Tìm GTNN của \(P=\frac{x^3}{1+y}+\frac{y^3}{1+z}+\frac{z^3}{1+x}\)
cho các số x,y,z thỏa mãn x+y+z=2018. Tính giá trị của biểu thức
A=(xy+yz+zx)(\(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) +\(\dfrac{1}{z}\)) -xyz (\(\dfrac{1}{x^2}\)+\(\dfrac{1}{y^2}\)+\(\dfrac{1}{z^2}\))