Bài 2: Cực trị hàm số

SK

Xác định giá trị của m để hàm số sau có cực trị :

a) \(y=x^3-3x^2+mx-5\)

b) \(y=x^3+2mx^2+mx-1\)

c) \(y=\dfrac{x^2-2mx+5}{x-m}\)

H24
21 tháng 4 2017 lúc 16:14

Lời giải + diễn giải

để hàm có cực trị f'(x) phải có nghiệm và đổi dấu qua nghiệm

a) \(y'=3x^2-6x+m\)

xét f(x)= 3x^2 -6x+m

để f(x) là hàm bậc 2 => có nghiệm và đổi dấu qua nghiệm đk cần và đủ \(\Delta>0\)

\(\Leftrightarrow\Delta'=9-3m>0\Rightarrow m< 3\)

Kết luận với m< 3 hàm A(x) luôn có cực trị

b)

\(y'=3x^2+4mx+m\)

\(\Delta'=4m^2-3m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{4}\end{matrix}\right.\)

c)

\(y=\dfrac{x^2-2mx+5}{x-m}\Rightarrow\left\{{}\begin{matrix}x\ne m\\y=\left(x-m\right)+\dfrac{5-m^2}{x-m}\end{matrix}\right.\)

\(y'=1+\dfrac{m^2-5}{\left(x-m\right)^2}\)

\(y'=0\Leftrightarrow\left(x-m\right)^2+m^2-5=0\Rightarrow5-m^2>0\Rightarrow-\sqrt{5}< m< \sqrt{5}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NB
Xem chi tiết
AN
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
MT
Xem chi tiết
NB
Xem chi tiết
SK
Xem chi tiết
NV
Xem chi tiết