Cho đường thẳng Δ có phương trình \(\left\{{}\begin{matrix}x=5t\\y=-1+6t\\z=2\end{matrix}\right.\) và mặt phẳng 2x-y-4z+3=0. Hình chiếu vuông góc d' của Δ lên mặt phẳng (P) theo phương d: \(\dfrac{x-1}{2}=\dfrac{y}{4}=\dfrac{z+3}{-1}\)
Cho A(1,2,-3), B(3,0,1) , denta :\(\left\{{}\begin{matrix}x=-1+2t\\y=2-t\\z=t\end{matrix}\right.\)
(P): x+y+z-3=0
a) Lập phương trình mặt phẳng (Q) đi qua điểm A và chứa đường thẳng denta
b) Lập phương trình mặt phẳng (Q) đi qua điểm A và song song với đường thẳng denta và vuông góc với mặt phẳng (P)
c) Lập phương trình đường thẳng d nằm trên mặt phẳng (P) cắt và vuông góc với denta
d) Lập phương trình đường thẳng d đi qua điểm A cắt denta tại M, cắt mặt phẳng (P) tại N sao cho M là trung điểm AN
Xét vị trí tương đối của các cặp đường thẳng d và d' cho bởi các phương trình sau :
a) \(d:\left\{{}\begin{matrix}x=-3+2t\\y=-2+3t\\z=6+4t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=5+t'\\y=-1-4t'\\z=20+t'\end{matrix}\right.\)
b) \(d:\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=3-t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=1+2t'\\y=-1+2t'\\z=2-2t'\end{matrix}\right.\)
viết pt đường thẳng d qua M(1,-2,3) và vuông góc với 2 đường d1:\(\frac{x}{1}=\frac{y-1}{-1}=\frac{z+1}{3}\) và d2: x=1-t , y=2+t , z=1+3t
Xét vị trí tương đối của các cặp đường thẳng d và d' cho bởi các phương trình sau :
a) \(d:\dfrac{x+1}{1}=\dfrac{y-1}{2}=\dfrac{z+2}{3}\) và \(d':\dfrac{x-1}{3}=\dfrac{y-5}{2}=\dfrac{z-4}{2}\)
b) \(d:\left\{{}\begin{matrix}x=t\\y=1+t\\z=2-t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=9+2t'\\y=8+2t'\\z=10-2t'\end{matrix}\right.\)
c) \(d:\left\{{}\begin{matrix}x=-t\\y=3t\\z=-1-2t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=0\\y=9\\z=5t'\end{matrix}\right.\)
Tính khoảng cách giữa đường thẳng \(\Delta:\left\{{}\begin{matrix}x=-3+2t\\y=-1+3t\\z=-1+2t\end{matrix}\right.\) và mặt phẳng \(\left(\alpha\right):2x-2y+z+3=0\) ?
Tìm a để hai đường thẳng sau đây cắt nhau :
\(d:\left\{{}\begin{matrix}x=1+at\\y=t\\z=-1+2t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=1-t'\\y=2+2t'\\z=3-t'\end{matrix}\right.\)
Xét vị trí tương đối của đường thẳng d với mặt phẳng \(\left(\alpha\right)\) trong các trường hợp sau :
a) \(d:\left\{{}\begin{matrix}x=t\\y=1+2t\\z=1-t\end{matrix}\right.\) và \(\left(\alpha\right):x+2y+z-3=0\)
b) \(d:\left\{{}\begin{matrix}x=2-t\\y=t\\z=2+t\end{matrix}\right.\) và \(\left(\alpha\right):x+z+5=0\)
c) \(d:\left\{{}\begin{matrix}x=3-t\\y=2-t\\z=1+2t\end{matrix}\right.\) và \(\left(\alpha\right):x+y+z-6=0\)
Cho hai đường thẳng :
\(d:\dfrac{x-1}{-1}=\dfrac{y-2}{2}=\dfrac{z}{3}\) và \(d:\left\{{}\begin{matrix}x=1+t'\\y=3-2t'\\z=1\end{matrix}\right.\)
Lập phương trình đường vuông góc chung của d và d' ?