mọi người giải gúp mình với. Cần cực gấp \(a,\left\{{}\begin{matrix}3x+2y=-2\\-x+4y=3\end{matrix}\right.b,\left\{{}\begin{matrix}x+2y=11\\5x-3y=3\end{matrix}\right.c,\left\{{}\begin{matrix}10x-9y=1\\15x+21y=36\end{matrix}\right.d,\left\{{}\begin{matrix}2x+y=3\\x+y=2\end{matrix}\right.e,\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.f,\left\{{}\begin{matrix}x-2y=11\\5x+3y=3\end{matrix}\right.g,\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.h,\left\{{}\begin{matrix}5x+3y=-7\\3x-y=-8\end{matrix}\right.\)
Cho x, y thỏa mãn điều kiện:\(\left(y+\sqrt{1+y^2}\right)\left(x+\sqrt{1+x^2}\right)+1.\)Tính giá trị của biểu thức x7+y7+2x5+2y5-3x3-3y3+4x+4y+100
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}4x^2-4xy-14x-3y^2+y+10=0\\5\sqrt{xy}+2x+2y=6\sqrt{y}-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^4+3x^2y+4x^2-2y^2+3y+2=0\\\sqrt{x\left(y-1\right)}+2y+2\sqrt{y-1}=3x+2\sqrt{x}+2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^6+3x^2-y^3-6y^2-15y-14=0\\\sqrt{xy+2x-y-2}+6x-2y=10\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
Giair các phương trình và hệ phương trình sau:
a) \(\left\{{}\begin{matrix}\dfrac{3x-1}{x+2}+\dfrac{2y+3}{y-2}=6\\\dfrac{2x+5}{x+2}-\dfrac{3y-1}{y-2}=2\end{matrix}\right.\)
b) \(3\left(\sqrt{x+3}+\sqrt{6-5x}\right)=2x^2+7\)
giải hệ : (xy+1)(2y-x)=2x3y2 v x2y2+1=2y2
Cho 3 đường thẳng (d1) : x+ 2y = 5 ; (f2) : 2x + y = 4 ; (d3) : 2mx + (m - 1)y = 3m +1
Từ đồ thị (d1) và (d2) tìm nghiệm của hệ phương trình
+ 2x + y = 4
+ x + 2y = 5
\(\left\{{}\begin{matrix}3x^2+2y+4=2z\left(x+3\right)\\3y^2+2z+4=2x\left(y+3\right)\\3z^2+2x+4=2y\left(z+3\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\text{x^3+x^2+x-y=x^2y+xy}\\x^2-2x+4=2\sqrt{y^3-1}\end{matrix}\right.\)
Cho 2 số thực x,y thỏa mãn :\(\left\{{}\begin{matrix}\sqrt[3]{x^3-7}+y^2-2y+3=0\\x^2+x^2y^2-2y=0\end{matrix}\right.\)
Tính giá trị cuả biểu thức: \(Q=x^{2018}+y^{2018}\)
Rút gọn:
\(A=\dfrac{\sqrt[3]{x^4}+\sqrt[3]{x^2y^2}+\sqrt[3]{y^4}}{\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}}\)
\(B=\dfrac{\sqrt[3]{xy}\left(\sqrt[3]{y^2}-\sqrt[3]{x^2}\right)+\left(\sqrt[3]{x^4}-\sqrt[3]{y^4}\right)}{\sqrt[3]{x^4}+\sqrt[3]{x^2y^2}-\sqrt[3]{x^3y}}.\sqrt[3]{x^2}\)
\(C=\left(\dfrac{x\sqrt[3]{x}-2x\sqrt[3]{y}+\sqrt[3]{x^2y^2}}{\sqrt[3]{x^2}-\sqrt[3]{xy}}+\dfrac{\sqrt[3]{x^2y}-\sqrt[3]{xy^2}}{\sqrt[3]{x}-\sqrt[3]{y}}\right).\dfrac{1}{\sqrt[3]{x^2}}\)