Violympic toán 9

NH

Với x>0 , tìm giá trị nhỏ nhất của biểu thức : \(M=4x^2-3x+\frac{1}{4x}+2011\)

AH
2 tháng 3 2020 lúc 11:08

Lời giải:

Áp dụng BĐT AM-GM cho các số dương ta có:
$3x^2+\frac{3}{4}\geq 3x$

$x^2+\frac{1}{8x}+\frac{1}{8x}\geq 3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}=\frac{3}{4}$

Cộng theo vế:

$\Rightarrow 4x^2+\frac{1}{4x}+\frac{3}{4}\geq 3x+\frac{3}{4}$

$\Rightarrow 4x^2+\frac{1}{4x}\geq 3x$

$\Rightarrow M=4x^2+\frac{1}{4x}-3x+2011\geq 2011$

Vậy $M_{\min}=2011$ khi $x=\frac{1}{2}$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
NB
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
NA
Xem chi tiết
QT
Xem chi tiết
MD
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết