Violympic toán 9

BB

Với x là số tự nhiên thỏa mãn: x>3, tìm giá trị lớn nhất của biểu thức : P=\(\dfrac{2\sqrt{x}+6}{\sqrt{x}+2}\)

 
AH
22 tháng 5 2022 lúc 23:11

Lời giải:
\(P=\frac{2(\sqrt{x}+2)+2}{\sqrt{x}+2}=2+\frac{2}{\sqrt{x}+2}\)

Với $x>3$ và $x$ là số tự nhiên thì $x\geq 4$

$\Rightarrow \sqrt{x}+2\geq \sqrt{4}+2=4$

$\Rightarrow \frac{2}{\sqrt{x}+2}\leq \frac{1}{2}$

$\Rightarrow P\leq 2+\frac{1}{2}=\frac{5}{2}$

Vậy $P_{\max}=\frac{5}{2}$ khi $x=4$

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NH
Xem chi tiết
BB
Xem chi tiết
MD
Xem chi tiết
NC
Xem chi tiết
VT
Xem chi tiết