với $m=1$ thì pt đó trở thành $m=3$ vô nghiệm
với $m \neq 1$
Thấy \(\Delta'=b'^2-ac=\left(m-1\right)^2-\left(m-1\right).\left(m-3\right)=m^2-2m+1-m^2+4m-3\\ =2m-2\)
nên pt vô nghiệm khi và chỉ khi $2m-2<0⇔m<1$
nên chọn A
với $m=1$ thì pt đó trở thành $m=3$ vô nghiệm
với $m \neq 1$
Thấy \(\Delta'=b'^2-ac=\left(m-1\right)^2-\left(m-1\right).\left(m-3\right)=m^2-2m+1-m^2+4m-3\\ =2m-2\)
nên pt vô nghiệm khi và chỉ khi $2m-2<0⇔m<1$
nên chọn A
Cho phương trình x^2 - 2(m-1)+m^2 Với giá trị nào của m thì phương trình có 2 nghiệm phân biệt Giúp e vs mn :(((
cho phương trình x^2-(m-1)x-m^2+m-2=0.Với giá trị nào của m thì c=x1^2 +x2^2 đạt giá trị nhở nhất
Cho hai phương trình : \(2x^2+\left(3m+1\right)x-9=0\) (1) và \(6x^2+\left(7m-1\right)x-19=0\) (2) . Với giá trị nào của m thì hai phương trình có nghiệm chung? Tìm nghiệm chung đó
cho phương trình \(2x^2-\left(m+3\right)x+m=0\) (1) với m là tham số
a, giải phương trình khi m = 2
b, chứng tỏ phương trình (1) có nghiệm với mọi giá trị của m. Gọi \(x_1;x_2\) là các nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức sau: A = \(\left|x_1-x_2\right|\)
với giá trị nào của k thì phương trình \(2x^2+\left(k-9\right)x+k^2+3k+4=0\) có nghiệm kép ( x là ẩn số )
Cho phương trình x2 - 2mx + m - 2 = 0 ( m là tham số )
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m
b) Gọi x1 ; x2 là các nghiệm của phương trình. Tìm giá trị của m để biểu thức
\(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}\) đạt giá trị nhỏ nhất
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
Cho phương trình : x2-2mx+m-1=0 ( m là tham số ).
a) Giải phương trình khi m=2
b) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m
Cho phương trình x² - 2x + m - 3 = 0(1) với m là tham số. Tìm giá trị của m để phương trình (1)có 2 nghiệm phân biệt