Violympic toán 8

NH

Với a, b, c là các số thực không âm thỏa mãn a+b+c=1. Tìm GTLN của biểu thức P = 4ab+2bc+ca

NL
22 tháng 12 2020 lúc 16:07

\(1-c=a+b\ge2\sqrt{ab}\Rightarrow4ab\le\left(1-c\right)^2\)

\(2bc+ca\le2bc+2ca=2c\left(a+b\right)=2c\left(1-c\right)\)

Từ đó ta có:

\(P\le\left(1-c\right)^2+2c\left(1-c\right)=1-c^2\le1\)

\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\)

Bình luận (2)

Các câu hỏi tương tự
BB
Xem chi tiết
LS
Xem chi tiết
LS
Xem chi tiết
KH
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết