Chương 5: ĐẠO HÀM

JE

Viết pt tiếp tuyến của đồ thị (C): \(y=\dfrac{2x+1}{x+1}\) biết d cách đều 2 điểm \(A\left(2;4\right)\) và \(B\left(-4;-2\right)\)?

NL
2 tháng 4 2021 lúc 18:43

Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)

\(\overrightarrow{BA}=\left(6;6\right)=6\left(1;1\right)\)

d cách đều 2 điểm AB khi d đi qua M hoặc d song song AB

TH1: d đi qua M

\(y'=\dfrac{1}{\left(x+1\right)^2}\) , gọi tiếp điểm có hoành độ \(x_0\Rightarrow\) phương trình tiếp tuyến:

\(y=\dfrac{1}{\left(x_0+1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+1}{x_0+1}\)

Do tiếp tuyến qua M nên: \(1=\dfrac{1}{\left(x_0+1\right)^2}\left(-1-x_0\right)+\dfrac{2x_0+1}{x_0+1}\)

\(\Leftrightarrow x_0=1\Rightarrow\)tiếp tuyến: \(y=\dfrac{1}{4}\left(x-1\right)+\dfrac{3}{2}\)

TH2: tiếp tuyến song song AB \(\Rightarrow\) có hệ số góc \(k=\dfrac{1}{1}=1\)

\(\Rightarrow\dfrac{1}{\left(x+1\right)^2}=1\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=-2\Rightarrow y=3\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=1\left(x-0\right)+1\\y=1\left(x+2\right)+3\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
JE
Xem chi tiết
QA
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
QA
Xem chi tiết
JE
Xem chi tiết
QA
Xem chi tiết
JE
Xem chi tiết