§3. Hàm số bậc hai

NT

Viết phương trình đường thẳng parabol y=ax2 + bx + c biết rằng (P) đi qua điểm E(1;-2) và đạt GTNN bằng -6 tại x=-3

AH
29 tháng 9 2017 lúc 11:21

Lời giải:

\(E(1;-2)\in (P)\Rightarrow -2=a+b+c(1)\)

Vì \(y=ax^2+bx+c\) tồn tại min nên \(a\geq 0\)

Khi đó \(y=ax^2+bx+c=a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}\) \(\geq c-\frac{b^2}{4a}\)

Tức là \(y_{\min}=c-\frac{b^2}{4a}\Leftrightarrow x=\frac{-b}{2a}\)

\(\Rightarrow \left\{\begin{matrix} c-\frac{b^2}{4a}=-6\\ \frac{-b}{2a}=-3\end{matrix}\right.(2)\)

Từ \((1),(2)\Rightarrow \left\{\begin{matrix} a=\frac{1}{4}\\ b=\frac{3}{2}\\ c=\frac{-15}{4}\end{matrix}\right.\)

Do đó \(y=\frac{1}{4}x^2+\frac{3}{2}x-\frac{15}{4}\)

Bình luận (0)

Các câu hỏi tương tự
MK
Xem chi tiết
NL
Xem chi tiết
CH
Xem chi tiết
NH
Xem chi tiết
LB
Xem chi tiết
NH
Xem chi tiết
21
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết