Violympic toán 9

NN

Viết phương trình đường thẳng đi qua hai điểm sau:
a) A 1;2 và B (-2;-1)
b) M 2;1 và(- 2; -7).
Bài 4 ) Tìm giao điểm của hai đường thẳng:
a) (d 1 ): 5x -2y = c và (d 2 ) : x + by = 2, biết rằng (d 1 ) đi qua điểm A(5;-1) và (d 2 ) đi qua điểm B(– 7; 3)
b) (d 1 ): ax + 2y = -3 và (d 2 ) : 3x -by = 5, biết rằng (d 1 ) đi qua điểm M(3;9) và (d 2 ) đi qua điểm N(– 1; 2)
Bài 5 )Cho tam giác vuông tại A (AB<AC) nối tiếp đường tròn (0) đường kính BC. Kẻ dây AD
vuông góc BC Gọi E là giao điểm của DB và AC. Qua E kẻ đường thẳng vuông góc với BC, cắt BC
tại H, cắt AB tại F.
a) Chứng minh tam giác EBF cân và tam giác HAF cân
b) Chứng minh: HA là tiếp tuyến của đường tròn (0)
Bài 6 )Từ điểm A ngoài đường tròn (O,R) với OA = 2R kẻ tiếp tuyến AB
a) Tính AB theo R
b) Kẻ dây BC vuông góc với OA tại H
Chứng minh: AC là tiếp tuyến của đường tròn (O)
a) CM: Bốn điểm A,B,O,C cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
b) Tia A0 cắt đường tròn (0) tại F (F I). Chứng minh BF là tiếp tuyến của đường tròn tâm I bán kính IBViết phương trình đường thẳng đi qua hai điểm sau:
a) A 1;2 và B 2; 1 .
b) M 2;1  và N2; 7 .
Bài 4 ) Tìm giao điểm của hai đường thẳng:
a) (d 1 ): 5x  2y = c và (d 2 ) : x + by = 2, biết rằng (d 1 ) đi qua điểm A(5;1) và (d 2 ) đi qua điểm B(– 7; 3)
b) (d 1 ): ax + 2y = 3 và (d 2 ) : 3x  by = 5, biết rằng (d 1 ) đi qua điểm M(3;9) và (d 2 ) đi qua điểm N(– 1; 2)
Bài 5 )Cho tam giác vuông tại A (AB<AC) nối tiếp đường tròn (0) đường kính BC. Kẻ dây AD
vuông góc BC Gọi E là giao điểm của DB và AC. Qua E kẻ đường thẳng vuông góc với BC, cắt BC
tại H, cắt AB tại F.
a) Chứng minh tam giác EBF cân và tam giác HAF cân
b) Chứng minh: HA là tiếp tuyến của đường tròn (0)
Bài 6 )Từ điểm A ngoài đường tròn (O,R) với OA = 2R kẻ tiếp tuyến AB
a) Tính AB theo R
b) Kẻ dây BC vuông góc với OA tại H
Chứng minh: AC là tiếp tuyến của đường tròn (O)
a) CM: Bốn điểm A,B,O,C cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
b) Tia A0 cắt đường tròn (0) tại F (F I). Chứng minh BF là tiếp tuyến của đường tròn tâm I bán kính IB .
b) M 2;1  và N2; 7 .
Bài 4 ) Tìm giao điểm của hai đường thẳng:
a) (d 1 ): 5x  2y = c và (d 2 ) : x + by = 2, biết rằng (d 1 ) đi qua điểm A(5;1) và (d 2 ) đi qua điểm B(– 7; 3)
b) (d 1 ): ax + 2y = 3 và (d 2 ) : 3x  by = 5, biết rằng (d 1 ) đi qua điểm M(3;9) và (d 2 ) đi qua điểm N(– 1; 2)
Bài 5 )Cho tam giác vuông tại A (AB<AC) nối tiếp đường tròn (0) đường kính BC. Kẻ dây AD
vuông góc BC Gọi E là giao điểm của DB và AC. Qua E kẻ đường thẳng vuông góc với BC, cắt BC
tại H, cắt AB tại F.
a) Chứng minh tam giác EBF cân và tam giác HAF cân
b) Chứng minh: HA là tiếp tuyến của đường tròn (0)
Bài 6 )Từ điểm A ngoài đường tròn (O,R) với OA = 2R kẻ tiếp tuyến AB
a) Tính AB theo R
b) Kẻ dây BC vuông góc với OA tại H
Chứng minh: AC là tiếp tuyến của đường tròn (O)
a) CM: Bốn điểm A,B,O,C cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
b) Tia A0 cắt đường tròn (0) tại F (F I). Chứng minh BF là tiếp tuyến của đường tròn tâm I bán kính IB

NN
19 tháng 3 2020 lúc 13:25

mấy đấu kì lạ đều là dấu trừ

Bình luận (0)
 Khách vãng lai đã xóa
PQ
19 tháng 3 2020 lúc 18:18

batngobatngobatngo

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
PP
Xem chi tiết
TN
Xem chi tiết
1K
Xem chi tiết
KG
Xem chi tiết
BB
Xem chi tiết
NA
Xem chi tiết
MH
Xem chi tiết
NN
Xem chi tiết