Viết phương trình chính tắc của elip (E) có hai tiêu điểm là \(F_1\) và \(F_2\) biết :
a) (E) đi qua hai điểm \(M\left(4;\dfrac{9}{5}\right)\) và \(N\left(3;\dfrac{12}{5}\right)\)
b) (E) đi qua \(M\left(\dfrac{3}{\sqrt{5}};\dfrac{4}{\sqrt{5}}\right)\) và tam giác \(MF_1F_2\) vuông tại M
Lập phương trình chính tắc của elip trong các trường hợp sau :
a) Elip đi qua các điểm \(M\left(0;3\right)\) và \(N\left(3;-\dfrac{12}{5}\right)\)
b) Elip có một tiêu điểm \(F_1\left(-\sqrt{3};0\right)\) và điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\) nằm trên elip
Viết phương trình chính tắc của elip trong các trường hợp sau :
a) Độ dài trục lớn bằng 26 và tỉ số \(\dfrac{c}{a}\) bằng \(\dfrac{5}{13}\)
b) Tiêu điểm \(F_1\left(-6;0\right)\) và tỉ số \(\dfrac{c}{a}\) bằng \(\dfrac{2}{3}\)
cho elip\(\dfrac{x^{2^{ }}}{25}+\dfrac{y^2}{9}=1\), đường thẳng đi qua một tiêu điểm của elip và vuông góc với trục hoành cắt elip tại A và B. Tính độ dài đoạn AB?
lập phương trình chính tắc của elip
biết độ dài trục lớn là 6, đi qua \(M\left(\dfrac{3\sqrt{2}}{2},\sqrt{2}\right)\) và M thuộc \(\left(E\right)\) cách O một khoảng \(\dfrac{\sqrt{26}}{2}\)
Viết phương trình chính tắc của elip biết tiêu điểm F1 = (-√3;0) và đi qua M (√3 ; ½)?
cho elip (e) có pt chính tắc: x^2/9 + y^2/4=1
a) tìm tọa độ đỉnh, tiêu điểm f1, f2, và tâm sai của (e)
b) tìm tọa độ điểm m thuộc (e) thõa mãn mf1 -mf2=2
(f1 là tiêu điểm bên trái của elip)
Trong mặt phẳng Oxy , viết phương trình chính tắc của Elip có một tiêu điểm là F1(-2;0) và đi qua điểm M(2;3)
Xác định độ dài các trục, tọa độ các tiêu điểm, tọa độ các đỉnh của các elip có phương trình sau :
a) \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\)
b) \(4x^2+9y^2=1\)
c) \(4x^2+9y^2=36\)