\(a^6-b^6=\left(a^3\right)^2-\left(b^3\right)^2=\left(a^3-b^3\right)\left(a^3+b^3\right)=\left(a-b\right)\left(a^2+ab+b^2\right).\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(a^6-b^6=\left(a^3\right)^2-\left(b^3\right)^2=\left(a^3-b^3\right)\left(a^3+b^3\right)=\left(a-b\right)\left(a^2+ab+b^2\right).\left(a+b\right)\left(a^2-ab+b^2\right)\)
viet cac bieu thuc sau duoi dang tich:
a, -64+(x-3)\(^3\)
viet cac bieu thuc sau duoi dang tich:
a, -64+(x-3)\(^3\)
viet cac bieu thuc sau duoi dang tich: x^3 y^3+225
viet cac bieu thuc sau duoi dang tich:
b,(a-1)\(^3\)-(a+1)\(^3\)
viet cac bieu thuc sau duoi dang tich:
b,(a-1)\(^3\)-(a+1)\(^3\)
viet cac bieu thuc sau duoi dang tich;
a,x\(^3\)y\(^3\)+225
viet cac bieu thuc sau duoi dang tich:
a,1,24\(^3\)-0,24\(^3\)
b,(a-1)\(^3\)+(a+1)\(^3\)
c, a\(^6\)-b\(^6\)
viet cac bieu thuc sau duoi dang tong:
a,(4-xy)^3
b,(0,1+xy)^3
viet cac bieu thuc sau duoi dang tong:
a,(-3x+2)\(^3\)