Vì:`sqrt{84}=sqrt{4.21}=sqrt{4}.sqrt{21}=2sqrt{21}`
\(2\sqrt{21}=\sqrt{2^2,21}=\sqrt{4.21}=\sqrt{84}\)
Vì:`sqrt{84}=sqrt{4.21}=sqrt{4}.sqrt{21}=2sqrt{21}`
\(2\sqrt{21}=\sqrt{2^2,21}=\sqrt{4.21}=\sqrt{84}\)
a, A = \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{14\sqrt{2}-20}\)
b, X = \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)
\(\sqrt{\dfrac{7}{2}}+\sqrt{84}-\sqrt{\dfrac{2}{7}}\)
* Thực hiện phép tính.
a.\(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
b.\(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
c.\(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}-\dfrac{5}{\sqrt{5}}\right).\dfrac{1}{2-\sqrt{5}}\)
d.\(\sqrt{\left(2-\sqrt{5}\right)^2-\sqrt{5}}\)
Bài: Tính giá trị các biểu thức sau
a. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
b. \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
a) \(\sqrt{28-2\sqrt{3}}+\sqrt{7}.\sqrt{7}+\sqrt{84}\)
b) \(\sqrt{14-6\sqrt{5}+\sqrt{14+6\sqrt{5}}}\)
So sánh:
a) \(4\sqrt{7}\) và \(3\sqrt{13}\)
b) \(3\sqrt{12}\) và \(2\sqrt{16}\)
c) \(\dfrac{1}{4}\sqrt{84}\) và \(6\sqrt{\dfrac{1}{7}}\)
d) \(3\sqrt{12}\) và \(2\sqrt{16}\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{17}{2}}\) và \(\dfrac{1}{3}\sqrt{19}\)
Cmr: A = \(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\) là số nguyên
Chứng minh đẳng thức :
a) \(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\sqrt{2}\)
b) \(B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=8\)
Tính:
a,\(\sqrt{19-6\sqrt{2}}\)
b,\(\sqrt{21+12\sqrt{3}}\)
c,\(\sqrt{57-40\sqrt{2}}\)
d,\(\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}\)
e,\(\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)
g,\(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)