Chương I - Căn bậc hai. Căn bậc ba

LD

Tính:
a,\(\sqrt{19-6\sqrt{2}}\)
b,\(\sqrt{21+12\sqrt{3}}\)
c,\(\sqrt{57-40\sqrt{2}}\)
d,\(\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}\)
e,\(\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)
g,\(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

PL
1 tháng 8 2018 lúc 10:27

\(a.\sqrt{19-6\sqrt{2}}=\sqrt{18-2.3\sqrt{2}+1}=3\sqrt{2}-1\)

\(b.\sqrt{21+12\sqrt{3}}=\sqrt{12+2.2\sqrt{3}.3+9}=2\sqrt{3}+3\)

\(c.\sqrt{57-40\sqrt{2}}=\sqrt{32-2.4\sqrt{2}.5+25}=4\sqrt{2}-5\)

\(d.\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}.\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\) \(e.\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\) \(g.\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}-\sqrt{4+2.2\sqrt{3}+3}=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)

Bình luận (0)
HT
1 tháng 8 2018 lúc 10:33

a)

=\(\sqrt{18-2.3\sqrt{2}.1+1}\)

\(=\sqrt{\left(3\sqrt{2}-1\right)^2}\)

\(=3\sqrt{2}-1\)

b)

=\(\sqrt{12+2.2\sqrt{3}.3+9}\)

=\(\sqrt{\left(2\sqrt{3}+3\right)^2}\)

=\(2\sqrt{3}+3\)

c)

=\(\sqrt{25-2.5.4\sqrt{2}+32}\)

=\(\sqrt{\left(5-4\sqrt{2}\right)^2}\)

=\(4\sqrt{2}-5\)

d)

\(=\sqrt{\left(3-2.\sqrt{3}.\sqrt{2}+2\right)\left(3-2\sqrt{3}+1\right)}\\ =\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2\left(\sqrt{3}-1\right)^2}\\ =\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\\ =3-\sqrt{3}-\sqrt{6}+\sqrt{2}\)

e)

\(=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}\\ =\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\\ =3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\\ =6\sqrt{2}\)

g)

\(=\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{4+2.2.\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)

Bình luận (0)
TN
1 tháng 8 2018 lúc 10:50

b, \(\sqrt{21+12\sqrt{3}}=\sqrt{21+2.3.2.\sqrt{3}}=\sqrt{9+2.3.\sqrt{12}+12}\)

\(=\sqrt{\left(3+\sqrt{12}\right)^2}=3+\sqrt{12}\)

\(c,\sqrt{57-40\sqrt{2}}=\sqrt{57-2.4.5.\sqrt{2}}=\sqrt{25-2.5.\sqrt{32}}\)

\(=\sqrt{\left(5-\sqrt{32}\right)^2}=\left|5-\sqrt{32}\right|=5-\sqrt{32}\)

\(d,\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{\left(3-2.\sqrt{2}.\sqrt{3}+2\right)\left(3-2\sqrt{3}+1\right)}\) \(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2\left(\sqrt{3}-1\right)^2}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\)

\(e,A=\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)

Ta có :

\(21+6\sqrt{6}=\dfrac{42+12\sqrt{6}}{2}=\dfrac{36+2.6.\sqrt{6}+6}{2}=\left(\dfrac{6+\sqrt{6}}{\sqrt{2}}\right)^2\) Tương tự : \(21-6\sqrt{6}=\left(\dfrac{6-\sqrt{6}}{\sqrt{2}}\right)^2\)

Do đó :

\(A=\sqrt{\left(\dfrac{6+\sqrt{6}}{\sqrt{2}}\right)^2}+\sqrt{\left(\dfrac{6-\sqrt{6}}{\sqrt{2}}\right)^2}=\dfrac{6+\sqrt{6}}{\sqrt{2}}+\dfrac{6-\sqrt{6}}{\sqrt{2}}=\dfrac{6+\sqrt{6}+6-\sqrt{6}}{\sqrt{2}}\)\(=\dfrac{12}{\sqrt{2}}=\dfrac{12\sqrt{2}}{2}=6\sqrt{2}\)

Phần g làm tương tự như phần e nha bạn :>

Chúc bạn học tốt :>

Bình luận (2)

Các câu hỏi tương tự
QE
Xem chi tiết
VU
Xem chi tiết
HN
Xem chi tiết
BG
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
AT
Xem chi tiết
QE
Xem chi tiết
TN
Xem chi tiết