Cho \(\Delta ABC\) cân tại A ( góc A tù ) . Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD = CE . Trên tia đối của tia CA lấy I sao cho CA = CI
Câu 1 : chứng minh :
a) \(\Delta ABC=\Delta ICE\)
b) AB + AC < AD + AE
Câu 2 : từ D và E kẻ các đường thẳng cùng vuôn góc với BC cắt AB , AI lần lượt tại M , N . Chứng minh BM = CN
Câu 3 : Chứng minh rằng chu vi tam giác ABC nhỏ hơn chu vi tam giác AMN
Mọi ng giúp minh câu 1 b với câu 3 thôi ạ . Cám ơn trước
cho tam giác abc vuông tại a đường cao ah abc có ab<ac. Trên cạnh AC lấy điểm E sao cho AB = AE. Tia phân giác của góc A cắt BC tại D A trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh BE song song FC
Cho Δ ABC có góc B = 2 góc C. Tia p/g của góc B cắt AC ở D. Trên tia đối tia BD lấy điểm E sao cho BE = AC. Trên tia đối tia CB lấy điểm K sao cho CK = AB. CMR AE = AK
Cho tam giác ABC, kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Trên tia đối của tia BD, lấy điểm H sao cho BH=AC, trên tia đối của tia CE, lấy điểm K sao cho CK=AB. Chứng minh rằng AH = AK.
Trên tia đối của các tia BC và CB của ΔABC cân tại đỉnh A lấy theo thứ tự 2 điểm D và E sao cho BD= CE
a. CMR: ΔACE= ΔADB. Từ đó suy ra ΔACE cân tại A
b. Gọi AM là trung tuyến của ΔABC. Chứng minh AM là tia phân giác của góc DAE
c. Từ B và C kẻ BH và CK vuông góc với AD= AE. HB và KC lần lượt cắt AM tại O và O'. Chứng minh: O và O' trùng nhau
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
Tam giác ABC có 3 góc nhọn, vẽ tia Ax vuông AB. Trên à lấy D sao cho AD=AB (D khác phía đối với AC). Vẽ tia Ay vuông AC. Trên tia Ay lấy E sao cho AE=AC (E khác phía đối với AB). CM:
a) DC=BE
b) DC vuông BE
Cho ΔABC cân tại A. Qua B kẻ tia Bx// AC; qua C kẻ tia Cy// AB. Bx cắt Cy tại D. Trên tia đối của tia BA lấy điểm E sao cho BE = BA. ED cắt AC tại F. Chứng minh
a. ΔABC = ΔBDE
b. C là trung điểm của AF
c. AD, BF, CE cùng đi qua 1 điểm G. G là gì của ΔAEF