Cho hàm số f(x) = x4. Hàm số g(x) = f'(x) - 3x2 - 6x+ 1 đạt cực tiểu, cực đại lần lượt tại x1, x2. Tính m = g(x1). g(x2)
Cho hàm số \(y=x^3+\left(1-2m\right)x^2+\left(2-m\right)x+m+2\) (1) với m là tham số thực
Xác định m để đồ thị hàm số (1) đạt cực đại và cực tiểu, đồng thời có hoành độ của điểm cực tiểu nhỏ hơn 1
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Mọi người giúp mình với ạ!!! Mình cảm ơn rất nhiều!!!
1, Viết phương trình đường thẳng đi qua các điểm cực trị của đồ thị hàm số:
\(y=x^3-6x^2-3x+2\)
2, Cho hàm số: \(y=x^3-x^2+mx\)
Tìm m để đồ thị hàm số có các điểm cực đại, cực tiểu: A, B sao cho Δ OAB vuông góc tại O.
Tìm m để hàm số y = 1 phần 3 x mũ 3 - (m + 1) x^2 + ( m^2 + 2) x + m - 2 đạt cực trị tại x1 x2 thỏa x1 bình phương + X2 bình phương = 10
Cho hàm số \(y=x^3-3x^2+m^2x+m\). Tìm tất cả các giá trị của tham số m để hàm số có cực đại, cực tiểu và các điểm cực đại, cực tiểu của đồ thị hàm số đối xứng nhau qua đường thẳng d:\(y=\frac{1}{2}x-\frac{5}{2}\)
Cho hàm số y = x^3 /3 + x^2 /2 + Mx . Tìm m để hs đạt cực đại và cực tiểu có hoành độ lớn hơn m?
Tìm m để đồ thị hàm số y = x^ 4 - 2m x^ 2 + 2 m + m^ 4 có cực đại và cực tiểu Đồng thời các điểm cực đại và cực tiểu lập thành một tam giác đều
Xác định m để hàm số
\(y=x^3-mx^2+\left(m-\dfrac{2}{3}\right)x+5\)
có cực trị tại \(x=1\). Khi đó hàm số đạt cực tiêu hay đạt cực đại ? Tính cực trị tương ứng ?