Bài 1. Giới hạn của dãy số

H24

Từ một hình vuông có cạnh bằng 1, tô màu một nửa hình vuông, rồi tô màu một nửa hình còn lại và cứ tiếp tục như vậy (xem Hình 2).

a) Xác định diện tích \({u_k}\) của phần hình được tô màu lần thứ \(k\left( {k = 1,2,3,...} \right)\).

b) Tính tổng diện tính \({S_n}\) của phần  hình được tô màu sau lần tô thứ \(n\left( {n = 1,2,3,...} \right)\).

c) Tìm giới hạn \(\lim {S_n}\) và so sánh giới hạn này với diện tích hình vuông ban đầu.

QL
22 tháng 9 2023 lúc 11:36

a) Theo đề bài, ta thấy \(\left( {{u_k}} \right)\) là cấp số nhân với số hạng đầu \({u_1} = \frac{1}{2}\), công bội \(q = \frac{1}{2}\).

Vậy \({u_k} = {u_1}.{q^{k - 1}} = \frac{1}{2}.{\left( {\frac{1}{2}} \right)^{k - 1}} = {\left( {\frac{1}{2}} \right)^k} = \frac{1}{{{2^k}}}\).

b) \(\left( {{u_n}} \right)\) là cấp số nhân với số hạng đầu \({u_1} = \frac{1}{2}\), công bội \(q = \frac{1}{2}\).

Vậy \({S_n} = {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = \frac{1}{2}.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = \frac{1}{2}.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{\frac{1}{2}}} = 1 - {\left( {\frac{1}{2}} \right)^n}\).

c) \(\lim {S_n} = \lim \left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right) = \lim 1 - \lim {\left( {\frac{1}{2}} \right)^n}\).

\(\lim 1 = 1\) vì 1 là hằng số.

\(\left| {\frac{1}{2}} \right| = \frac{1}{2} < 1\) nên \(\lim {\left( {\frac{1}{2}} \right)^n} = 0\)

Vậy \(\lim {S_n} = \lim 1 - \lim {\left( {\frac{1}{2}} \right)^n} = 1 - 0 = 1\)

Giới hạn này bằng diện tích của hình vuông ban đầu.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết