$6. Ba đường conic

QL

Trong mặt phẳng, xét đường elip (E) là tập hợp các điểm M sao cho \(M{F_1} + M{F_2} = 2a\), ở đó \({F_1}{F_2} = {\rm{ }}2c\) (với a>c>0). Ta chọn hệ trục toạ độ Oxy có gốc là trung điểm của \({F_1}{F_2}\), trục Oy là đường trung trực của \({F_1}{F_2}\), và \({F_2}\) nằm trên tia Ox (Hình 52). Khi đó, \({F_1}\left( { - c;0} \right)\) và \({F_2}\left( {c;0} \right)\) là hai tiêu điểm của elip (E). Chứng minh rằng:

a) \({A_1}\left( { - a;0} \right)\) và \({A_2}\left( {a{\rm{ }};{\rm{ }}0} \right)\) đều là giao điểm của elip (E) với trục Ox,

b) \({B_1}\left( {0; - {\rm{ }}b} \right)\) và\({B_2}\left( {0;{\rm{ }}b} \right)\) , ở đó\(b = \sqrt {{a^2} - {c^2}} \), đều là giao điểm của elip (E) với trục Oy.

HM
30 tháng 9 2023 lúc 22:54

a) Do \({A_1}{F_1} = a - c\) và \({A_1}{F_2} = a - c\) nện\({A_1}{F_1} + {A_1}{F_2} = 2a\).Vậy \({A_1}\left( { - a;{\rm{ }}0} \right)\) thuộc elip (E).

Mà A (-1; 0) thuộc trục Ox nên \({A_1}\left( { - a;{\rm{ }}0} \right)\) là giao điểm của elip (E) với trục Ox.

Tương tự, ta chứng minh được \({A_2}\left( {a;{\rm{ }}0} \right)\) là giao điểm của clip (E) với trục Ox.

b) Ta có:\({B_2}{F_2} = \sqrt {{{\left( {c - 0} \right)}^2} + {{\left( {0 - b} \right)}^2}}  = \sqrt {{c^2} + {b^2}}  = \sqrt {{a^2}}  = a\).Vì \({B_2}{F_1} = {B_2}{F_2}\) nên\({B_2}{F_1} + {B_2}{F_2} = a + a = 2a\). Do đó, \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\) thuộc elip (E). Mà \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\)thuộc trục Oy nên \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\)là giao điểm của elip (E) với trục Oy.

Tương tự, ta chứng minh được: \({B_1}\left( {0{\rm{ }};{\rm{  - }}b} \right)\)là giao ddiemr của elip (E) với trục Oy.

Như vậy, elip (E) đi qua bốn điểm \({A_1}\left( { - a;{\rm{ }}0} \right)\)\({A_2}\left( {a{\rm{ }};{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ }}b} \right)\)\({B_2}\left( {0;{\rm{ }}b} \right)\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết