Do hypebol (H) giao với trục Ox tại điểm có hoành độ bằng 3 nên tọa độ giao điểm của (H) vơi trục Ox là (3;0), do đó ta có:
\({\frac{3}{{{a^2}}}^2} - \frac{{{0^2}}}{{{b^2}}} = 1 \Rightarrow {a^2} = 9 \Rightarrow a = 3\) (a > 0)
Do \(N\left( {\sqrt {10} ;2} \right) \in \left( H \right)\) nên ta có:
\({\frac{{\left( {\sqrt {10} } \right)}}{{{a^2}}}^2} - \frac{{{2^2}}}{{{b^2}}} = 1 \Rightarrow {b^2} = 36 \Rightarrow b = 6\) (b > 0)
Vậy phương trình chính tắc của (H) là: \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{36} = 1\)