Chương III: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

LH

Trong mặt phẳng Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có H\(\left(\frac{-6}{5};\frac{7}{5}\right)\) là chân đường cao hạ từ A lên BD. Trung điểm BC là M(-1;0). . Phương trình đường trung tuyến kẻ từ A của tam giác ADH là 7x+y-3=0. Tọa độ đỉnh D(a;b). Tính a+b

NL
19 tháng 6 2020 lúc 17:32

Gọi P là trung điểm AH, Q là trung điểm DH \(\Rightarrow\) PQ là đường trung bình tam giác ADH \(\Rightarrow\left\{{}\begin{matrix}PQ//AD\\PQ=\frac{1}{2}AD\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}PQ//BM\\PQ=BM\end{matrix}\right.\)

\(\Rightarrow PQMB\) là hbh \(\Rightarrow BP//MQ\)

Mặt khác \(PQ//AD\Rightarrow PQ\perp AB\Rightarrow\) P là trực tâm tam giác ABQ

\(\Rightarrow BP\perp AQ\Rightarrow MQ\perp AQ\) (với AQ là trung tuyến kẻ từ A của ADH)

\(\Rightarrow\) Đường thẳng MQ nhận \(\left(1;-7\right)\) là 1 vtpt

Phương trình MQ: \(1\left(x+1\right)-7y=0\Leftrightarrow x-7y+1=0\)

Q là giao AQ và MQ nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-7y+1=0\\7x+y-3=0\end{matrix}\right.\) \(\Rightarrow Q\left(\frac{2}{5};\frac{1}{5}\right)\)

Q là trung điểm DH \(\Rightarrow D\left(2;-1\right)\)

Bình luận (0)

Các câu hỏi tương tự
QN
Xem chi tiết
NH
Xem chi tiết
NA
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
TC
Xem chi tiết
TV
Xem chi tiết
SA
Xem chi tiết