Đề luyện thi tốt nghiệp phổ thông, cao đẳng, đại học

TN

Trong không gian tọa độ Oxyz, cho mặt cầu (S): \(x^2+y^2+z^2-2x+4y-2z-8=0\) và mặt phẳng (P): 2x+3y+z-11=0. Viết phương trình mặt phẳng (Q) song song với mặt phẳng (P) và cắt mặt cầu (S) theo một đường tròn có bán kính bằng một nửa bán kính mặt cầu (S).

A.\(\left(Q_1\right):2x+3y+z-3+7\sqrt{3}=0;\left(Q_2\right):2x+3y+z-3-7\sqrt{3}=0\)

B. \(\left(Q_1\right):2x+3y+z+3+7\sqrt{3}=0;\left(Q_2\right):2x+3y+z+3-7\sqrt{3}=0\)

C. \(\left(Q_1\right):2x-3y+z+3+7\sqrt{3}=0;\left(Q_2\right):2x-3y+z+3-7\sqrt{3}=0\)

D. \(\left(Q_1\right):2x+3y-z+3+7\sqrt{3}=0;\left(Q_2\right):2x+3y-z+3-7\sqrt{3}=0\)

(Giải thích giùm mình)

NL
21 tháng 4 2020 lúc 9:32

Bán kính mặt cầu: \(R=\sqrt{1^2+\left(-2\right)^2+1^2+8}=\sqrt{14}\)

Tâm mặt cầu: \(I\left(1;-2;1\right)\)

\(\Rightarrow d\left(I;\left(Q\right)\right)=\sqrt{R^2-\left(\frac{R}{2}\right)^2}=\frac{\sqrt{42}}{2}\)

Do (Q) song song (P) nên pt (Q) có dạng: \(2x+3y+z+d=0\)

Áp dụng công thức khoảng cách:

\(d\left(I;\left(Q\right)\right)=\frac{\left|2-6+1+d\right|}{\sqrt{2^2+3^2+1}}=\frac{\sqrt{42}}{2}\)

\(\Leftrightarrow\left|d-3\right|=7\sqrt{3}\Rightarrow\left[{}\begin{matrix}d=3+7\sqrt{3}\\d=3-7\sqrt{3}\end{matrix}\right.\)

Có 2 mặt phẳng thỏa mãn: \(\left[{}\begin{matrix}2x+3y+z+3+7\sqrt{3}=0\\2x+3y+z+3-7\sqrt{3}=0\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
BV
Xem chi tiết
LH
Xem chi tiết
KR
Xem chi tiết
LH
Xem chi tiết
NM
Xem chi tiết