Chứng minh tính đơn điệu của hàm số y=sin x đồng biến trên khoảng (\(\dfrac{-\pi}{2}+k2\pi;\dfrac{\pi}{2}+k2\pi\)) và nghịch biến trên khoảng (\(\dfrac{\pi}{2}+k2\pi;\dfrac{3\pi}{2}+k2\pi\))
Chứng minh tính đơn điệu của hàm số y=cos x đồng biến trên khoảng \(\left(-\pi+k2\pi;0+k2\pi\right)\)
xét tính đồng biến nghịch biến của hàm số y=cosx/2
1.Tìm tập xác định của hàm số: y= \(\sqrt{1+sinx-2cos^2x}\)
2. Cho hàm số: y = \(\sqrt{sin^4x+cos^4x-2msinx.cosx}\)
Tìm các giá trị của m để xác định với mọi x.
tìm tập xác định của mỗi hàm số sau :
a) y = \(\sqrt{3-\sin x}\) ; b) y = \(\frac{1-\cos x}{\sin x}\) ; c) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; d) y = \(\tan\)(2x + \(\frac{\pi}{3}\))
cho hàm số y = f(x) = 2\(\sin\)2x .
a) chứng minh rằng với số nguyên k tùy ý , luôn có f(x + k\(\pi\)) = f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = 2\(\sin\)2x trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
c) vẽ đồ thị của hàm số y = 2\(\sin\)2x .
Tịnh tiến đồ thị hàm số y= cos x sang phải \(\dfrac{\pi}{2}\) ta được đồ thị hàm số nào
A. \(y=sinx\)
B.\(y=-cosx\)
C.\(y=\)\(cos\left(x+\dfrac{\pi}{2}\right)\)
D.\(y=sin\left(x-\dfrac{\pi}{2}\right)\)
Cho hàm số \(y=\dfrac{2sinx+1}{\sqrt{sin^2x+\left(2m-3\right)cosx+3m-2}}\). Có bao nhiêu giá trị của m thuộc khoảng (-2023;2023) để hàm số xác định với mọi x thuộc R
a)vẽ đồ thị hàm số \(y=\sin x\) rồi chỉ ra trên đồ thị đó các điểm có hoành độ thuộc khoảng \(\left(-\pi;4\pi\right)\) là nghiệm của mõi phương trình sau :
1) \(\sin x=-\frac{\sqrt{3}}{2}\) ; 2) \(\sin x=1\)
b) cũng câu hỏi tương tự cho hàm số \(y=\cos x\) đối với mỗi phương trình sau : 1) \(\cos x=\frac{1}{2}\) ; 2) \(\cos x=-1\)