Chương I - Hệ thức lượng trong tam giác vuông

PK

 Trên đường tròn (O) đường kính AB, lấy điểm E bất kỳ (khác A và B). Gọi F là điểm đối xứng với E qua O. Vẽ đường thẳng vuông góc với AB tại B, đường thẳng này cắt các tia AE, AF lần lượt tại M và N. a) Chứng minh AE.AM = AF.AN. b) Tìm vị trí của E trên đường tròn (O) để đoạn thẳng MN có độ dài nhỏ nhất.

NT
13 tháng 11 2023 lúc 21:49

a: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>BE\(\perp\)AM

Xét (O) có

ΔAFB nội tiếp

AB là đường kính

Do đó: ΔAFB vuông tại F

=>BF\(\perp\)AN

Xét ΔABM vuông tại B có BE là đường cao

nên \(AE\cdot MA=AB^2\left(1\right)\)

Xét ΔABN vuông tại B có BF là đường cao

nên \(AF\cdot AN=AB^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AM=AF\cdot AN\)

 

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
JP
Xem chi tiết
ZD
Xem chi tiết
LG
Xem chi tiết
NH
Xem chi tiết
LL
Xem chi tiết
HD
Xem chi tiết