`1)[x^3-8]/[5x+20].[x^2+4x]/[x^2+2x+4]`
`=[(x-2)(x^2+2x+4)]/[5(x+4)].[x(x+4)]/[x^2+2x+4]`
`=[x(x-2)]/5=[x^2-2x]/5`
_____________________________________________
`2)[x+1]/[x^2-2x-8].[4-x]/[x^2+x]`
`=[x+1]/[(x-4)(x+2)].[-(x-4)]/[x(x+1)]`
`=[-1]/[x(x+2)]=[-1]/[x^2+2x]`
_____________________________________________
`3)[3x^2-x]/[x^2-1].[1-x^4]/[(1-3x)^3]`
`=[x(3x-1)]/[x^2-1].[-(x^2-1)(x^2+1)]/[-(3x-1)(9x^2+3x+1)]`
`=[x(x^2+1)]/[9x^2+3x+1]=[x^3+x]/[9x^2+3x+1]`