Ôn tập toán 6

PL

Tính tổng:

A= 5/1.4+5/4.7+...+5/100.103

B= 1/15+1/35+...+1/2499

TB
30 tháng 4 2017 lúc 21:52

a) \(A=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)

\(\Leftrightarrow A=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)

\(\Leftrightarrow\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(\Leftrightarrow\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)

\(\Leftrightarrow\dfrac{5}{3}.\dfrac{102}{103}\)

\(\Leftrightarrow\) \(A=\dfrac{170}{103}\)

b) \(B=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

\(B=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

\(B=\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{51}\right)\)

\(B=\dfrac{1}{2}.\dfrac{16}{51}\)

\(B=\dfrac{8}{51}\)

Bình luận (0)
TC
2 tháng 6 2017 lúc 13:37

A = \(\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)

A = \(\dfrac{5}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)

A = \(\dfrac{5}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{100}+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{100}-\dfrac{1}{100}\right)-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-0-0-...-0-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\left[\dfrac{103}{103}-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\dfrac{102}{103}\)

A = \(\dfrac{170}{103}\)

B = \(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

B = \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

B = \(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)

B = \(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{49}-\dfrac{1}{49}\right)-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-0-0-...-0-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\left[\dfrac{17}{51}-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\dfrac{16}{51}\)

B = \(\dfrac{8}{51}\)

Bình luận (0)
DS
2 tháng 6 2017 lúc 14:05

Hỏi đáp Toán

Bình luận (0)

Các câu hỏi tương tự
AJ
Xem chi tiết
IK
Xem chi tiết
PH
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
IK
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết