Ôn tập toán 6

H24

S = \(\dfrac{1}{1.2}\) +...+ \(\dfrac{1}{49.50}\)

S = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + ... + \(\dfrac{3}{43.46}\)

S = \(\dfrac{1}{15}\) + \(\dfrac{1}{35}\) + ... + \(\dfrac{1}{2499}\)

S = \(\dfrac{1}{123}\) + \(\dfrac{1}{234}\) + ... + \(\dfrac{1}{9899100}\)

MV
24 tháng 4 2017 lúc 20:43

\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =1-\dfrac{1}{50}\\ =\dfrac{49}{50}\)

\(S=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{43\cdot46}\\ =\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\\ =1-\dfrac{1}{46}\\ =\dfrac{45}{46}\)

\(S=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\\ =\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{49\cdot51}\\ =\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{51}\right)\\ =\dfrac{1}{2}\cdot\dfrac{16}{51}\\ =\dfrac{8}{51}\)

Bình luận (1)
MV
24 tháng 4 2017 lúc 20:45

\(S=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{98\cdot99\cdot100}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{98\cdot99\cdot100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}-\dfrac{1}{99\cdot100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{99\cdot100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\\ =\dfrac{1}{2}\cdot\dfrac{4949}{9900}=\dfrac{4949}{19800}\)

Bình luận (1)

Các câu hỏi tương tự
NC
Xem chi tiết
DB
Xem chi tiết
PA
Xem chi tiết
JP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
JJ
Xem chi tiết
PH
Xem chi tiết