Ôn tập toán 6

PH

Chứng minh rằng:

a) \(\dfrac{a}{n\left(n+a\right)}\)= \(\dfrac{1}{n}\)- \(\dfrac{1}{n+a}\) ( n, a\(\in\) N sao)

b) Áp dụng câu a tính

A = \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\)+.....+ \(\dfrac{1}{99.100}\)

B = \(\dfrac{5}{1.4}\)+ \(\dfrac{5}{4.7}\)+......+ \(\dfrac{5}{100.103}\)

C = \(\dfrac{1}{15}\)+ \(\dfrac{1}{35}\)+....+ \(\dfrac{1}{2499}\)

BT
5 tháng 4 2017 lúc 20:23

a, \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{n+a-n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)

Vậy \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{a}{n\left(n+a\right)}\)

b,

\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

\(B=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)

\(3B=\dfrac{5.3}{1.4}+\dfrac{5.3}{4.7}+...+\dfrac{5.3}{100.103}\)

\(3B=5\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)

\(3B=5\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(3B=5\left(1-\dfrac{1}{103}\right)=5\cdot\dfrac{102}{103}=\dfrac{510}{103}\)

\(B=\dfrac{510}{103}:3=\dfrac{170}{103}\)

\(C=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

\(C=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

\(2C=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\)

\(2C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(2C=\dfrac{1}{3}-\dfrac{1}{51}=\dfrac{16}{51}\)

\(C=\dfrac{16}{51}:2=\dfrac{8}{51}\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
GB
Xem chi tiết
CS
Xem chi tiết
DB
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết