Đại số lớp 7

TT

Tính theo cách hợp lí:

A=3+6+9+12+...+2007

B=\(\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)

CL
4 tháng 8 2017 lúc 9:45

số số hạng của A là :

( 2007 - 3 ) : 3 + 1 = 669 ( số )

tổng A là :

( 2007 + 3 ) . 669 : 2 = 672345

B = \(\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)

B = \(\dfrac{2006.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(\dfrac{2005}{2}+1\right)+\left(\dfrac{2004}{3}+1\right)+...+\left(\dfrac{1}{2006}+1\right)+1}\)

B = \(\dfrac{2006.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2006}+\dfrac{2007}{2007}}\)

B = \(\dfrac{2006.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{2007.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2006}+\dfrac{1}{2007}\right)}\)

B = \(\dfrac{2006}{2007}\)

Bình luận (2)
H24
4 tháng 8 2017 lúc 9:56

\(A=3+6+9+12+...+2007\)

\(A=\dfrac{\left(2007+3\right)\left(\dfrac{2007-3}{3}+1\right)}{2}\)

\(A=\dfrac{2010.669}{2}=672235\)

\(B=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)

\(B=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{2006+\left(\dfrac{2005}{2}+1\right)+\left(\dfrac{2004}{3}+1\right)+...\left(\dfrac{1}{2006}+1\right)-2005}\)

\(B=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2007}+\dfrac{2007}{2}+\dfrac{2005}{3}+...+\dfrac{2007}{2006}}\)

\(B=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{2007\left(\dfrac{1}{2007}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}\right)}=\dfrac{2006}{2007}\)

tik mik nha !!!

Bình luận (0)
CL
4 tháng 8 2017 lúc 10:00

Nguyễn copy mình à

Bình luận (1)

Các câu hỏi tương tự
DP
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
DN
Xem chi tiết
CT
Xem chi tiết
NA
Xem chi tiết
LS
Xem chi tiết
LL
Xem chi tiết
KK
Xem chi tiết