S=(\(\dfrac{-1}{7}\))0+(\(\dfrac{-1}{7}\))1+...+(\(\dfrac{-1}{7}\))2016
\(\Rightarrow\)\(\dfrac{-1}{7}S\)=(\(\dfrac{-1}{7}\))1+(\(\dfrac{-1}{7}\))2+...+(\(\dfrac{-1}{7}\))2017
\(\Rightarrow\)\(\dfrac{-1}{7}S\)-\(S\)=\([\) (\(\dfrac{-1}{7}\))1+(\(\dfrac{-1}{7}\))2+...+
(\(\dfrac{-1}{7}\))2017 \(]\)-\([\)(\(\dfrac{-1}{7}\))0+(\(\dfrac{-1}{7}\))1+...+
(\(\dfrac{-1}{7}\))2016\(]\)
=(\(\dfrac{-1}{7}\))1+(\(\dfrac{-1}{7}\))2+...+(\(\dfrac{-1}{7}\))2017-
(\(\dfrac{-1}{7}\))0-(\(\dfrac{-1}{7}\))1-...-(\(\dfrac{-1}{7}\))2016
\(\dfrac{-8}{7}S\)=(\(\dfrac{-1}{7}\))2017-1
S=\(\dfrac{(\dfrac{-1}{7})^{2017}-1}{\dfrac{-8}{7}}\)