Đại số lớp 6

H24

Tính S = 1 + \(\frac{1}{2}\).(1+2) + \(\frac{1}{3}\).(1+2+3) + \(\frac{1}{4}\).(1+2+3+4) + .... + \(\frac{1}{2017}\).(1+2+3+....+2017)

SG
20 tháng 10 2016 lúc 21:28

\(S=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{2017}.\left(1+2+3+...+2017\right)\)

\(S=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+\frac{1}{4}.\frac{\left(1+4\right).4}{2}+...+\frac{1}{2017}.\frac{\left(1+2017\right).2017}{2}\)

\(S=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{2018}{2}\)

\(S=\frac{1}{2}.\left(2+3+4+...+2018\right)\)

\(S=\frac{1}{2}.\frac{\left(2+2018\right).2017}{2}\)

\(S=\frac{2020.2017}{4}=505.2017=1018585\)

Bình luận (0)

Các câu hỏi tương tự
KM
Xem chi tiết
KM
Xem chi tiết
TD
Xem chi tiết
PL
Xem chi tiết
IT
Xem chi tiết
LB
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết